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Functional analysis is a branch of mathematical analysis that focuses on the study of
vector spaces and operators acting upon them. It has a wide range of applications in both
pure and applied mathematics, as well as in various scientific fields. Some of the key areas
where functional analysis is used include:

• Partial Differential Equations (PDEs): Many techniques in functional analysis
are used to study and solve PDEs, which model physical phenomena such as heat, fluid
flow, and waves.

• Quantum Mechanics: Functional analysis provides the mathematical foundation for
quantum theory, especially through Hilbert spaces and linear operators.

• Signal Processing: Tools from functional analysis, such as Fourier transforms and
wavelets, are essential in signal and image processing.

• Control Theory: Functional analytic methods help in modeling and solving problems
related to dynamic systems and feedback control.

• Economics and Optimization: Functional analysis is used in the study of infinite-
dimensional optimization problems and economic equilibria.

• Numerical Analysis: It underpins the theoretical framework for various numerical
methods, including finite element methods.

In summary, functional analysis plays a critical role in both theoretical and applied
contexts, bridging abstract mathematical theory with practical applications.

The goal of this lecture is to provide an introduction to functional analysis, which will
enable further interest and research in the aforementioned areas. In the final lectures, we
will aim to build the framework of functional analysis and explore variational methods that
allow us to solve elliptic equations, such as the famous nonlinear Schrödinger equation

−∆u+ V (x)u = f(u),

or the Dirichlet problem, which is important from the perspective of physics, applications,
and is interesting in terms of functional analytic tools.

3



1 Banach and Hilbert Spaces

1.1 Normed spaces and complete norms, examples
Definition 1.1. A normed space (X, ‖ · ‖) is a vector space X over R or C equipped with
a function ‖ · ‖ : X → R, called a norm, satisfying the following properties for all x, y ∈ X
and α ∈ R (or C):

• Positivity: ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0.

• Homogeneity (absolute scalability): ‖αx‖ = |α| · ‖x‖.

• Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition 1.2. A sequence (xn) in a normed space (X, ‖ · ‖) is called a Cauchy sequence if
for every ε > 0 there exists N ∈ N such that for all m,n ≥ N , we have ‖xn − xm‖ < ε.

A normed space is said to be complete if every Cauchy sequence in X converges to a limit
in X. A complete normed space is called a Banach space.

Example 1.1 (Classical Banach spaces).

• The sequence space `p for 1 ≤ p ≤ ∞ consists of all sequences x = (xn)∞n=1 of scalars
such that:

‖x‖p =

(∑∞n=1 |xn|p)
1/p if 1 ≤ p <∞,

supn∈N |xn| if p =∞,

is finite. Each `p space is a Banach space.

• The space Lp([a, b]) for 1 ≤ p ≤ ∞ consists of (equivalence classes of) measurable
functions f : [a, b] → R (or C) such that the p-th power of the absolute value is
integrable:

‖f‖p =


(∫ b
a |f(x)|p dx

)1/p
if 1 ≤ p <∞,

ess supx∈[a,b]|f(x)| if p =∞.

These spaces are Banach spaces.

• The space C([a, b]) of continuous real (or complex) functions on [a, b] equipped with
the supremum norm

‖f‖∞ = sup
x∈[a,b]

|f(x)|

is also a Banach space.

Example 1.2 (Non-complete normed space). Let c00 denote the space of sequences with
only finitely many nonzero terms, equipped with the `p norm for some 1 ≤ p < ∞. Then
(c00, ‖ · ‖p) is a normed space, but it is not complete — its completion is `p.

Remark 1.1. Every norm induces a metric d(x, y) = ‖x − y‖, so every normed space is a
metric space. However, not every metric space arises from a norm.
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1.1.1 Direct sum of normed spaces

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed vector spaces over the same field (e.g., R or C).
The direct sum of X and Y , denoted by X ⊕ Y , is the Cartesian product X × Y equipped
with the following operations:

(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2), λ · (x, y) := (λx, λy)

and a norm defined, for example, by:

‖(x, y)‖1 := ‖x‖X + ‖y‖Y

Alternatively, one can use:

‖(x, y)‖∞ := max{‖x‖X , ‖y‖Y }

or:
‖(x, y)‖2 :=

(
‖x‖2

X + ‖y‖2
Y

)1/2

Each of these norms turns X ⊕ Y into a normed space. The specific choice of norm
depends on the context and desired properties. All the above norms are equivalent, i.e. there
are constants 0 < a < b such that

a‖(x, y)‖i ≤ ‖(x, y)‖∞ ≤ b‖(x, y)‖i

for any (x, y) ∈ X × Y and i = 1, 2.

1.1.2 Quotient space

Let (X, ‖ · ‖) be a normed vector space and let X0 ⊂ X be a closed linear subspace. The
quotient space X/X0 is the set of equivalence classes

X/X0 := {[x] : x ∈ X}, where [x] := x+X0 = {x+ x0 : x0 ∈ X0}.

Two elements x, y ∈ X belong to the same equivalence class if and only if x− y ∈ X0. The
space X/X0 becomes a normed vector space when equipped with the norm

‖[x]‖X/X0 := inf
x0∈X0

‖x+ x0‖ = inf
z∈[x]
‖z‖.

With this norm, X/X0 is a normed space. If X is a Banach space (i.e., complete), then so
is (X/X0, ‖ · ‖X/X0).

1.2 Bounded Linear Operators
Definition 1.3. A linear operator T : X → Y between normed spaces is bounded if there
exists C ≥ 0 such that ‖Tx‖Y ≤ C‖x‖X for all x ∈ X. The least possible constant C such
that the above inequality holds is denoted by ‖T‖.
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Let X and Y be normed vector spaces over the same field (usually R or C). We define

α(X, Y ) := {T : X → Y | T is linear and continuous}

as the set of all continuous linear operators from X to Y .

Theorem 1.1. T ∈ α(X, Y ) if and only if one of the following condition holds

• T is continuous,

• T is continuous at 0,

• T is bounded.

Proof. Exercise

the set α(X, Y ) forms a vector space itself, and can be equipped with the operator norm

‖T‖ = sup
‖x‖X≤1

‖T (x)‖Y = sup
‖x‖X=1

‖T (x)‖Y .

Theorem 1.2. (α(X, Y ), ‖ · ‖) is a normed vector space, and a Banach space if (Y, ‖ · ‖Y ) is
a Banach space.

Proof.

1.3 Hahn-Banach Theorem
Theorem 1.3 (Hahn-Banach). Let p : X → R be a sublinear function, i.e.

• p(λx) = λp(x),

• p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X, λ > 0,

and let f be a linear functional defined on a subspace Y ⊆ X such that f(y) ≤ p(y) for all
y ∈ Y . Then f can be extended to a linear functional F on X such that F (x) ≤ p(x) for all
x ∈ X.

Proof. The proof uses Zorn’s Lemma. Consider the set of all linear extensions of f to
subspaces of X dominated by p. Order this set by extension. Zorn’s Lemma ensures a
maximal element, which can be shown to be defined on all of X.

1.4 Duals of Normed Spaces
Definition 1.4. The dual space X∗ = α(X,R) of a normed space X is the set of all bounded
linear functionals on X. In view of Theorem 1.2, X∗ is a Banach space.

Theorem 1.4. Let 1 < p <∞ and let q be the Hölder conjugate exponent of p, i.e.,
1
p

+ 1
q

= 1.

Then the dual space (`p)∗ is isometrically isomorphic to `q.
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Proof. Let en = (0, · · · , 0, 1, 0, · · · ) with 1 at the n-th place. For every continuous linear
functional ϕ ∈ (`p)∗, there exists a unique sequence y = (yn) such that

ϕ(x) =
∞∑
n=1

xnyn for all x = (xn) ∈ `p,

that is yn := φ(en).
y = (yn) ∈ `q. Let zn := |yn|q−2yn if yn 6= 0, otherwise zn = 0. Observe that

‖φ‖ ≥ |f(∑n
i=k zkek)|

‖∑n
i=k zkek‖p

=
∑n
i=k |yk|q

(∑n
i=k |yk|(q−1)p)1/p = ‖

n∑
i=k

ykek‖q.

Hence y ∈ `q. Moreover,
φ(x) ≤ ‖x‖p‖y‖q,

so ‖φ‖ ≤ ‖y‖q. This correspondence defines an isometric isomorphism

Φ : (`p)∗ → `q, Φ(x) = y

This mapping Φ is linear, bijective, and satisfies

‖Φ(φ)‖q = ‖φ‖.

Theorem 1.5. The dual space of `1, denoted (`1)∗, is isometrically isomorphic to `∞. That
is, for every continuous linear functional ϕ ∈ (`1)∗, there exists a unique sequence y = (yn) ∈
`∞ such that

ϕ(x) =
∞∑
n=1

xnyn for all x = (xn) ∈ `1.

This correspondence defines an isometric isomorphism.

Remark 1.2. `1 ( (`∞)∗

Theorem 1.6. Let (X,A, µ) be a measure space.
If 1 < p <∞:

(Lp(µ))∗ ∼= Lq(µ), where 1
p

+ 1
q

= 1

That is, the dual space of Lp is isometrically isomorphic to Lq, and each bounded linear
functional φ ∈ (Lp)∗ can be represented as:

φ(f) =
∫
X
f(x)g(x) dµ(x), for some g ∈ Lq(µ)

If p = 1:

(L1(µ))∗ ∼= L∞(µ)
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Each bounded linear functional on L1 is given by integration against a function in L∞.
If p =∞:

L1(µ) ( (L∞(µ))∗

In this case, the dual of L∞ is strictly larger than L1. Specifically:

(L∞(µ))∗ ∼= ba(µ)

where ba(µ) denotes the space of bounded finitely additive set functions (not necessarily
σ-additive).

Summary:

For 1 < p <∞ : (Lp)∗ ∼= Lq, where 1
p

+ 1
q

= 1

For p = 1 : (L1)∗ ∼= L∞

For p =∞ : L1 ( (L∞)∗

1.4.1 Application of Hahn-Banach theorem

Corollary 1.1. Let (X, ‖ · ‖) be a normed space and x0 ∈ X. There is g ∈ X∗ such that
g(x0) = ‖x0‖ and ‖g‖X∗ = 1.

Proof. Put Y = Rx0.

Corollary 1.2. Let (X, ‖ · ‖) be a normed space. Then

‖x‖ = sup
f∈X∗, ‖f‖≤1

|f(x)| = max
f∈X∗, ‖f‖≤1

|f(x)|.

Proof. If f ∈ X∗ and ‖f‖ ≤ 1, then |f(x)| ≤ ‖x‖ for any x ∈ X. On the other hand there
is g ∈ X∗ such that g(x) = ‖x‖ and ‖g‖X∗ = 1.

Given two disjoint convex subsets A and B of a normed space X, can we find a continuous
linear functional f ∈ X∗ that separates them — that is, such that the images f(A) and f(B)
do not overlap?

We will show that, under certain mild conditions on the sets A and B, such a functional
always exists.

Theorem 1.7 (Separation of Convex Sets). Let (X, ‖ · ‖) be a normed vector space and let
A,B ⊂ X be two disjoint convex subsets.

(i) If A is open, then there exists f ∈ X∗ and c ∈ R such that

f(a) < c ≤ f(b) for all a ∈ A, b ∈ B.

(ii) If A is compact and B is closed, then there exists f ∈ X∗ and c1, c2 ∈ R, with c1 < c2,
such that

f(a) ≤ c1 < c2 ≤ f(b) for all a ∈ A, b ∈ B.
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In order to prove theorem we need the following lemma.

Lemma 1.1 (Minkowski functional). Let (X, ‖·‖) be a normed vector space, and let C ⊂ X
be an open convex set with 0 ∈ C. Define, for each x ∈ X,

p(x) := inf
{
α > 0 : α−1x ∈ C

}
.

Then the function p : X → [0,∞) satisfies:

1. p(λx) = λp(x) for all λ > 0 (positive homogeneity),

2. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X (subadditivity),

3. There exists a constant M > 0 such that p(x) ≤M‖x‖ for all x ∈ X,

4. C = {x ∈ X : p(x) < 1}.

Proof. 1. Let λ > 0. Then

p(λx) = inf
{
α > 0 : α−1λx ∈ C

}
= inf

{
λβ > 0 : β−1x ∈ C

}
= λp(x).

2. Let x, y ∈ X and ε > 0. Choose α < p(x) + ε/2, β < p(y) + ε/2, such that

x

α
∈ C, y

β
∈ C.

Define λ = α
α+β , so that

λ · x
α

+ (1− λ) · y
β

= x+ y

α + β
∈ C

by convexity. Hence,
p(x+ y) ≤ α + β < p(x) + p(y) + ε.

Since ε > 0 was arbitrary, we conclude that p(x+ y) ≤ p(x) + p(y).
3. Since C is open and contains 0, there exists r > 0 such that B(0, r) ⊂ C. Then for any
x ∈ X, we have ∥∥∥∥∥ r

‖x‖
x

∥∥∥∥∥ = r ⇒ r

‖x‖
x ∈ C if x 6= 0.

Thus p(x) ≤ ‖x‖
r
. Let M := 1

r
. Then p(x) ≤M‖x‖ for all x ∈ X.

4. (⊆) Let x ∈ C. Since C is open, there exists ε > 0 such that (1 + ε)x ∈ C. Hence
p(x) ≤ (1 + ε)−1 < 1.

(⊇) Suppose p(x) < 1. Then there exists α < 1 such that α−1x ∈ C. Since C is convex
and 0 ∈ C, we have:

x = α · (α−1x) + (1− α) · 0 ∈ C.

Hence, x ∈ C. Therefore,
C = {x ∈ X : p(x) < 1}.
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Lemma 1.2 (Separation of a point and an open convex set). Let (X, ‖ · ‖) be a normed
space, let C ⊂ X be a nonempty open convex set, and let x0 /∈ C. Then there exists a
nonzero f ∈ X∗ such that

f(x) < f(x0) for all x ∈ C.
In other words, the affine hyperplane {x : f(x) = f(x0)} strictly separates the point x0 and
the convex set C.

Proof. Since C is convex and open and does not contain x0, we can translate everything by
picking some c0 ∈ C. Define

D := C − c0 and y0 := x0 − c0.

Then D is still open, convex, nonempty, and 0 ∈ D, while y0 /∈ D. Define the gauge
(Minkowski) functional p : X → [0,∞) by

p(x) := inf{α > 0 : α−1x ∈ D}.

By Lemma 1.1, p is sublinear and satisfies p(x) < 1⇔ x ∈ D. In particular, p(y0) ≥ 1.
Consider the one-dimensional subspace Y = span{y0}. Define a linear functional g : Y →

R by
g(λy0) = λ.

Then for any λ ∈ R,
g(λy0) = λ ≤ |λ| ≤ p(λy0),

where the last inequality uses sublinearity of p and p(y0) ≥ 1. So g ≤ p on Y .
By the Hahn–Banach Theorem 1.3, g can be extended to some f ∈ X∗ such that f ≤ p

everywhere and f(y0) = g(y0) = 1. In particular, f is nonzero.
For any x ∈ C, write x = d+ c0 with d ∈ D. Then p(d) < 1, and hence

f(x) = f(d+ c0) = f(d) + f(c0) < 1 + f(c0).

On the other hand,

f(x0) = f(y0 + c0) = f(y0) + f(c0) = 1 + f(c0).

Thus f(x) < f(x0) for all x ∈ C, completing the proof.

Proof of Theorem 1.7. (i) Assume A is open, convex, and disjoint from convex set B. Fix
a0 ∈ A, b0 ∈ B and set

x0 := a0 − b0.

Define the set
C := {a− b : a ∈ A, b ∈ B}.

Then C ⊂ X is convex, and since A ∩B = ∅, we have 0 /∈ C. Moreover, because A is open,
C is also open in X. .

Now apply Lemma 1.2 and there exists a continuous linear functional f ∈ X∗ and α > 0
such that

f(x) < f(0) = 0 for all x ∈ C.
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In particular, for all a ∈ A, b ∈ B,

f(a− b) = f(a)− f(b) < 0⇒ f(a) < f(b).

Since A is open, then f(A) is open and

f(a) < sup
x∈A

f(x) ≤ f(b)

(ii) Now suppose that A is compact and B is closed. Since the two sets are disjoint and
A is compact, the distance between them is strictly positive:

ρ := inf{‖a− b‖ : a ∈ A, b ∈ B} > 0.

We define the open ρ-neighborhood of A as

Aρ := {x ∈ X : dist(x,A) < ρ}.

This set is open, contains A, and is still disjoint from B, because every point in Aρ lies at a
distance strictly less than ρ from A, while all points in B are at least ρ away.

Now we can apply the result from part (i). Since Aρ is open and convex, and disjoint
from the convex set B, there exists a continuous linear functional g ∈ X∗ and a scalar c2 ∈ R
such that

g(a) < c2 ≤ g(b) for all a ∈ Aρ, b ∈ B.
Because A ⊂ Aρ and A is compact, the image g(A) is compact in R, and the supremum

c1 := sup
a∈A

g(a)

is attained. Hence, we obtain

g(a) ≤ c1 < c2 ≤ g(b) for all a ∈ A, b ∈ B.

This establishes the strict separation between the sets A and B.

1.5 Open Mapping Theorem
Let (X, d) be a metric space. A subset D ⊂ X is called dense in X if every nonempty open
set G ⊂ X intersects D; i.e. for every x ∈ X and any open neighborhood U 3 x, D∩U 6= ∅.

Theorem 1.8 (Baire’s Theorem). Let (X, d) be a complete metric space, and let {Dn}n∈N
be a sequence of subsets of X, where each Dn is open and dense in X. Then the intersection

D :=
∞⋂
n=1

Dn

is also dense in X.
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Lemma 1.3. Let (X, ‖ · ‖) be a Banach space and let K ⊂ X be a closed, convex, and
symmetric set such that

X =
∞⋃
n=1

nK, where nK := {nx : x ∈ K} .

Then K must contain a neighborhood of the origin.

Proof. Since X = ⋃∞
n=1 nK, we obtain

∞⋂
n=1

(nK)c = ∅

Because K is closed, each (nK)c is open in X and in view of Theorem 1.8, Kc cannot
be dense. This means that K has nonempty interior. So for some z, there exists a ball
B(z, r) ⊂ K, i.e., K contains a ball centered at some point z. Now, since K is symmetric, it
contains both z and −z, and since K is convex, it must also contain the midpoint between
them, which is the origin:

0 = 1
2(−z) + 1

2(z) ∈ K.

Using convexity again,
B
(
0, 1

2r
)

= 1
2(−z) + 1

2B(z, r) ⊂ K.

Theorem 1.9 (Open Mapping Theorem). Let X and Y be Banach spaces, and let T ∈
α(X, Y ) be surjective. Then T is an open mapping; that is, for every open set U ⊂ X, the
image T (U) ⊂ Y is also open.

Proof. We start by considering the image of the unit ball in X, defined as

K := T (BX(0, 1)).

This set K ⊂ Y is convex, symmetric, and closed. Because T is surjective, we have:

Y =
∞⋃
n=1

nK.

Now we use Lemma 1.3, which tells us that if a symmetric, convex, closed set K satisfies
Y = ⋃∞

n=1 nK, then K must contain a neighborhood of the origin. In particular, there exists
a constant c > 0 such that:

BY (0, 4c) ⊂ K.

Observe that, for every n ≥ 0

BY

(
0, 1

2n−2 c
)
⊂ T

(
BX

(
0, 1

2n
))
.
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Now we show that BY (0, c) ⊂ T (BX(0, 1)). Let y ∈ BY (0, c). Then, since BY (0, c) ⊂
T (BX(0, 1/4)), there exists a sequence of points in X that approximate y by T . Indeed, take
ε = c

2 . Then there exists x1 ∈ X such that

‖x1‖ <
1
4 , and ‖y − Tx1‖ <

c

2 .

This implies that the remainder y − Tx1 ∈ BY (0, c/2) ⊂ T (BX(0, 1/8)), so we can find
x2 ∈ X with

‖x2‖ <
1
8 , and ‖y − Tx1 − Tx2‖ <

c

4 .

Proceeding inductively, for each n ∈ N, we choose xn ∈ X such that

‖xn‖ <
1

2n+1 , and
∥∥∥∥∥y −

n∑
k=1

Txk

∥∥∥∥∥ < c

2n .

Define the partial sums
zn :=

n∑
k=1

xk.

Then the sequence {zn} is Cauchy, because for n > m,

‖zn − zm‖ =

∥∥∥∥∥∥
n∑

k=m+1
xk

∥∥∥∥∥∥ ≤
n∑

k=m+1
‖xk‖ <

∞∑
k=m+1

1
2k+1 = 1

2m+1 .

So {zn} converges in the Banach space X to some element z ∈ X. By continuity of T , we
have

Tz = lim
n→∞

Tzn = y.

Furthermore,
‖z‖ ≤

∞∑
n=1
‖xn‖ <

∞∑
n=1

1
2n+1 = 1

2 ,

which shows that z ∈ BX(0, 1), and thus y = Tz ∈ T (BX(0, 1)). This proves that

BY (0, c) ⊂ T (BX(0, 1)).

So we have shown that the image of the unit ball under T contains an open ball around zero
in Y . Now we use this to show that T maps any open set in X to an open set in Y . Let
U ⊂ X be any open set, and take any point y ∈ T (U). Then there exists x ∈ U such that
T (x) = y. Since U is open, we can find a radius r > 0 such that:

BX(x, r) ⊂ U.

Then:
T (U) ⊃ T (BX(x, r)) = T (x+BX(0, r)) = y + T (BX(0, r)).

But since T (BX(0, r)) = r · T (BX(0, 1)) ⊃ r ·BY (0, c) = BY (0, rc), we conclude that:

T (U) ⊃ BY (y, rc).

This means that T (U) contains an open ball around every point y ∈ T (U), so T (U) is open
in Y .
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Theorem 1.10 (Bounded Inverse Theorem). Let X and Y be Banach spaces, and let T ∈
L(X, Y ) be a bijective bounded linear operator. Then its inverse T−1 : Y → X is also
bounded and linear; that is, T−1 ∈ L(Y,X).

Proof. Since T is a bounded bijective linear operator between Banach spaces, the Open
Mapping Theorem 1.9 applies. Thus, T is an open mapping. In particular, the image of the
unit ball in X, defined by

V := {T (x) : ‖x‖X ≤ 1},
contains a ball around the origin in Y ; that is, there exists r > 0 such that:

BY (0, r) ⊂ T (BX(0, 1)).

Now take any y ∈ BY (0, r). Then y = T (x) for some x ∈ BX(0, 1), hence:

‖T−1(y)‖X = ‖x‖X < 1.

Therefore,
T−1(BY (0, r)) ⊂ BX(0, 1).

This implies that T−1 is bounded and

‖T−1‖ ≤ 1
r
.

Corollary 1.3. Let ‖ · ‖1 and ‖ · ‖2 be two norms on a vector space X, and suppose both
norms are complete (i.e., define Banach spaces), and there exists c > 0 such that

‖x‖1 ≤ c‖x‖2 for all x ∈ X.

Then the norms are equivalent; that is, there exists c′ > 0 such that

‖x‖2 ≤ c′‖x‖1 for all x ∈ X.

Proof. Consider the identity map:

Id : (X, ‖ · ‖2)→ (X, ‖ · ‖1).

This map is clearly linear, and the assumption ‖x‖1 ≤ c‖x‖2 means that it is bounded.
Since both normed spaces are Banach (complete), and the identity map is bijective and

bounded, we can apply Theorem 1.10, the inverse map

Id−1 : (X, ‖ · ‖1)→ (X, ‖ · ‖2)

is also bounded. That means:

‖x‖2 ≤ c′‖x‖1 for some c′ > 0.

Hence, the norms ‖ · ‖1 and ‖ · ‖2 are equivalent.
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1.6 Banach-Steinhaus Theorem
Theorem 1.11. LetX be a Banach space and Y be a normed vector space. Let T ⊆ α(X, Y )
be a family of bounded linear operators such that:

sup
T∈T
‖T (x)‖Y <∞ for every x ∈ X.

Then:
sup
T∈T
‖T‖α(X,Y ) <∞.

Proof. Define the set

K =
{
x ∈ X : sup

T∈T
‖T (x)‖Y ≤ 1

}
.

It is easy to verify that K is a closed, convex, and symmetric subset of X. For any x ∈ X,
define:

Mx = sup
T∈T
‖T (x)‖Y <∞.

Then ∥∥∥∥T ( x

Mx

)∥∥∥∥
Y

= ‖T (x)‖Y
Mx

≤ 1 for all T ∈ T ,

which implies
x

Mx

∈ K

and x ∈MxK. Therefore
X =

∞⋃
n=1

nK.

By Lemma 1.3, it follows that K contains a neighborhood of the origin. Thus, there exists
r > 0 such that the open ball B(0, r) ⊆ K. Hence supT∈T ‖T‖ ≤ r−1.

1.7 Closed Graph Theorem
Theorem 1.12. If T : X → Y is a linear operator between Banach spaces, and its graph is
closed in X × Y , then T is bounded, i.e. T ∈ α(X, Y ).

Proof. Let X and Y be Banach spaces, and consider their direct sum X ⊕ Y equipped with
the norm

‖(x, y)‖ := ‖x‖X + ‖y‖Y .
Define the canonical projections:

PX : X ⊕ Y → X, PX(x, y) := x,

PY : X ⊕ Y → Y, PY (x, y) := y.

Both projections PX and PY are bounded linear operators, since they act as coordinate
projections in the Banach space X ⊕ Y . Observe that Z := Graph(T ) ⊂ X ⊕ Y is a closed
subspace such that the restriction

PX |Z : Z → X

15



is bijective. Then, by Theorem 1.10, its inverse

(PX |Z)−1 : X → Z

is also a bounded linear operator. Define the operator T : X → Y by

T := PY ◦ (PX |Z)−1.

In other words, for each x ∈ X, we find the unique (x, y) ∈ Z with first coordinate x, and
define T (x) := y. Since both PY and (PX |Z)−1 are bounded, the composition T is also
bounded. Therefore,

T ∈ L(X, Y ).

1.7.1 Neuman series

Theorem 1.13 (Neumann Series). Let X be a Banach space and let A ∈ α(X,X) be such
that ‖A‖ < 1. Then the series

∞∑
n=0

An = I + A+ A2 + A3 + . . .

converges in the operator norm to a bounded operator S ∈ α(X,X), and this operator
satisfies

S = (I − A)−1.

Proof. Step 1: Convergence of the series. Since ‖A‖ < 1, the sequence of partial sums

SN =
N∑
n=0

An

is a Cauchy sequence in the Banach space α(X,X). Indeed, for M > N we have

‖SM − SN‖ =

∥∥∥∥∥∥
M∑

n=N+1
An

∥∥∥∥∥∥ ≤
M∑

n=N+1
‖A‖n ≤ ‖A‖

N+1

1− ‖A‖ .

Since the right-hand side tends to 0 as N → ∞, (SN) is Cauchy. Because α(X,X) is
Banach, SN converges in norm to some S ∈ α(X,X).
Step 2: Computation of the limit. For each N ≥ 0,

(I − A)SN = (I − A)
N∑
n=0

An =
N∑
n=0

An −
N∑
n=0

An+1 = I − AN+1.

Taking the limit as N →∞ gives

(I − A)S = lim
N→∞

(I − A)SN = I − lim
N→∞

AN+1.
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Since ‖AN+1‖ ≤ ‖A‖N+1 → 0 as N →∞, we obtain

(I − A)S = I.

Similarly, one shows S(I − A) = I. Thus S is the inverse of (I − A), i.e.

S = (I − A)−1.

We conclude that the Neumann series converges in α(X,X) and its sum is the inverse of
I − A.

1.8 Strong and Weak Convergence
Definition 1.5. A sequence {xn} converges strongly to x if ‖xn − x‖ → 0.

Definition 1.6. A sequence {xn} converges weakly to x if f(xn)→ f(x) for all f ∈ X∗.

Let (X, ‖ · ‖) be a normed vector space. We define the so-called canonical embedding

J = JX : X → X∗∗ = (X∗)∗, by JX(x)(f) := f(x) for all x ∈ X, f ∈ X∗.

Theorem 1.14. JX is a linear and injective operator. Moreover

‖JX(x)‖X∗∗ = ‖x‖X .

for every x ∈ X.

Proof. Let x, y ∈ X with x 6= y. Then x− y 6= 0. By the Hahn–Banach theorem 1.3, there
exists a functional g ∈ X∗ such that

‖g‖X∗ = 1 and g(x− y) = ‖x− y‖X > 0.

Thus,
JX(x)(g) = g(x) 6= g(y) = JX(y)(g),

so JX(x) 6= JX(y), which shows that JX is injective. Next, we compute the norm of JX(x) ∈
X∗∗:

‖JX(x)‖X∗∗ = sup
f∈X∗, ‖f‖X∗≤1

|JX(x)(f)| = sup
‖f‖X∗≤1

|f(x)| = ‖x‖X .

The inequality ‖JX(x)‖X∗∗ ≤ ‖x‖X follows directly from the dual norm inequality:

|f(x)| ≤ ‖f‖X∗ · ‖x‖X .

To obtain equality, again a the Hahn–Banach theorem 1.3, there exists f ∈ X∗ with ‖f‖X∗ =
1 and f(x) = ‖x‖X . Then:

‖JX(x)‖X∗∗ ≥ |JX(x)(f)| = |f(x)| = ‖x‖X .

Combining both bounds gives:
‖JX(x)‖X∗∗ = ‖x‖X ,

which completes the proof.
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Theorem 1.15. Let X and Y be normed vector spaces, and let {xn} ⊂ X. Then

(i) If xn → x strongly in X, then xn ⇀ x weakly in X.

(ii) If xn ⇀ x weakly in X, then the sequence {‖xn‖X} is bounded and

lim inf
n→∞

‖xn‖X ≥ ‖x‖X .

(iii) If xn ⇀ x weakly in X and T ∈ L(X, Y ), then Txn ⇀ Tx weakly in Y .

Proof. (i) Let f ∈ X∗. Since

|f(xn)− f(x)| = |f(xn − x)| ≤ ‖f‖X∗ · ‖xn − x‖X → 0 as n→∞,

we conclude that f(xn)→ f(x), which means xn ⇀ x weakly in X.
(ii) By the Hahn–Banach Theorem 1.3, there exists a functional f ∈ X∗ such that ‖f‖X∗ = 1
and f(x) = ‖x‖X . Since xn ⇀ x, we have

f(xn)→ f(x) = ‖x‖X .

Also, since |f(xn)| ≤ ‖f‖X∗ · ‖xn‖X , it follows that

‖x‖X = lim
n→∞

f(xn) ≤ lim inf
n→∞

‖xn‖X .

Assume that xn ⇀ x. Then, by definition of weak convergence, we have:

J(xn)(f) = f(xn)→ f(x) = J(x)(f), for all f ∈ X∗.

This means that the sequence {J(xn)} ⊂ X∗∗ converges pointwise on X∗ to J(x). Hence

sup
n≥1
|J(xn)(f)| <∞

for every f ∈ X∗. Hence, for each f ∈ X∗, the sequence {JX(xn)(f)} is bounded. By the
Banach-Steinhaus Theorem 1.11, it follows that the sequence {JX(xn)} is uniformly bounded
in X∗∗, i.e.

sup
n≥1
‖JX(xn)‖X∗∗ <∞.

Now, by Theorem 1.14 we conclude:

sup
n≥1
‖xn‖X = sup

n≥1
‖JX(xn)‖X∗∗ <∞.

This proves that any weakly convergent sequence in X is norm-bounded.
(iii) Let g ∈ Y ∗. Then g ◦ T ∈ X∗, so

g(Txn) = (g ◦ T )(xn)→ (g ◦ T )(x) = g(Tx),

which proves that Txn ⇀ Tx weakly in Y .
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Example 1.3. Let 1 < p <∞, and define a sequence {un} ⊂ Lp(R) by

un(t) =

1 if t ∈ [n, n+ 1),
0 otherwise.

This sequence converges weakly to zero in Lp(R), but not strongly.
Indeed, observe that for any n 6= m,

‖un − um‖Lp =
(∫

R
|un(t)− um(t)|p dt

)1/p
= 21/p,

because their supports are disjoint. So the sequence is not Cauchy, hence not strongly
convergent. To prove weak convergence, recall that any f ∈ (Lp)∗ corresponds to a function
v ∈ Lq(R) (where 1

p
+ 1

q
= 1) such that

f(u) =
∫
R
u(t)v(t) dt.

Then, by the Hölder inequality and Lebesgue’s dominated convergence theorem

f(un) =
∫
R
un(t)v(t) dt =

∫ n+1

n
v(t) dt ≤

( ∫ n+1

n
|v(t)|q dt

)1/q
→ 0 as n→∞,

because v ∈ Lq(R). Hence, un ⇀ 0 weakly in Lp(R).

1.8.1 Eberlein–Šmulian theorem

The weak topology on X is the coarsest topology on X such that all elements of X∗ remain
continuous.

In general topological spaces (especially non-metrizable ones), compactness does not co-
incide with sequential compactness. The weak topology on an infinite-dimensional Banach
space is not metrizable, so sequential compactness does not automatically follow from com-
pactness. However the following theorem shows that weak compactness and weak sequential
compactness are equivalent in Banach spaces.

Theorem 1.16 (Eberlein–Šmulian Theorem). Let X be a Banach space and A ⊂ X. Then
the following are equivalent:

1. A is weakly compact.

2. A is weakly sequentially compact (every sequence in A has a weakly convergent subse-
quence).

1.8.2 Remarks on integrability and Vitali Convergence Theorem

For a family {fn} ⊂ L1(X,µ) on a (possibly infinite) measure space, we say it is tight if

∀ε > 0 ∃ measurable E0 ⊂ X, µ(E0) <∞ such that sup
n

∫
X\E0

|fn| dµ < ε.
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Theorem 1.17 (Vitali Convergence Theorem). Suppose that

1. The family {fn} ⊂ L1(X,µ) is tight,

2. and {fn} is uniformly integrable, i.e. for every ε > 0 there exists δ > 0 such that for
all measurable A ⊂ X with µ(A) < δ,

sup
n

∫
A
|fn| dµ < ε.

If fn → f pointwise a.e. on X, then f is integrable on X and

lim
n→∞

∫
X
|fn − f | dµ = 0,

that is, fn → f in L1(X,µ).

The theorem generalizes the Dominated Convergence Theorem, where domination by an
integrable function implies tightness and uniform integrability.

1.9 Weak* Topology and Banach-Alaoglu Theorem
Definition 1.7. If {fn} ⊂ X∗ is a sequence, then we say that fn converges to f ∈ X∗ in the
weak* topology fn ∗

⇀ f provided that

lim
n→∞

fn(x) = f(x) for every x ∈ X.

Theorem 1.18 (Banach-Alaoglu). The closed unit ball

DX∗ = {f ∈ X∗ : ‖f‖ ≤ 1}

in the dual of a normed space is compact in the weak* topology.

Proof. For each x ∈ X, consider the closed interval:

[−‖x‖, ‖x‖] ⊂ R.

Now define the product space:
K :=

∏
x∈X

[−‖x‖, ‖x‖].

Each coordinate space is compact in R, and so by Tychonoff’s Theorem (in its elementary
form for products of compact metric spaces), the product K is compact with the product
topology. Define a map

Φ : DX∗ → K, Φ(f) := (f(x))x∈X .

This is well-defined since for all f ∈ BX∗ , we have:

|f(x)| ≤ ‖f‖ · ‖x‖ ≤ ‖x‖, so f(x) ∈ [−‖x‖, ‖x‖].

The mapping Φ is injective and continuous with respect to the weak* topology in DX∗

Therefore, Φ(DX∗) is a subset of a compact space K, and since it is closed in the weak-*
topology, it is compact. Thus, the unit ball DX∗ is compact in the weak-* topology.
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1.10 Reflexive Spaces
Definition 1.8. A Banach space X is reflexive if the natural map J : X → X∗∗ defined by
J(x)(f) = f(x) is surjective.

Theorem 1.19. Any reflexive normed space is a Banach space.

Proof. Let (X, ‖ · ‖) be a reflexive normed space. By definition the canonical map

JX : X → X∗∗, JX(x)(f) = f(x) for all f ∈ X∗,

is an isometric isomorphism onto its image, and moreover, JX(X) = X∗∗. That is, X ∼= X∗∗

isometrically and surjectively. Since the dual space X∗ is a Banach space, then bidual X∗∗
is also a Banach space. Therefore X inherits completeness from X∗∗, and hence X is also a
Banach space.

Corollary 1.4. Let X be a reflexive Banach space. Then every bounded sequence {xn} ⊂ X
has a subsequence that converges weakly in X.

Proof. Since {xn} is bounded, there exists R > 0 such that xn ∈ RDX for all n, where
DX = {x ∈ X : ‖x‖ ≤ 1} is the closed unit ball. Since X is reflexive, the canonical
embedding J : X → X∗∗ is surjective. By the Banach–Alaoglu theorem, the closed unit ball
DX∗∗ ⊂ X∗∗ is weak* compact. Reflexivity implies that J(DX) = DX∗∗ is weakly compact
in X.

Therefore, the bounded closed set RDX is weakly compact in X. By the Eberlein–
Šmulian theorem, weak compactness implies weak sequential compactness, so (xn) has a
weakly convergent subsequence.

Example 1.4 (Reflexive Banach Spaces). The following are examples of reflexive Banach
spaces:

• Every finite-dimensional normed space, e.g. Rn.

• Every Hilbert space H (by the Riesz Representation Theorem) – we will see later.

• Lp(µ) spaces for 1 < p <∞ (with dual Lq(µ), 1/p+ 1/q = 1).

• `p spaces for 1 < p <∞ (with dual `q).

Example 1.5 (Non-Reflexive Banach Spaces). The following are not reflexive:

• L1(µ) and L∞(µ).

• `1 and `∞.

• c0, the space of sequences converging to 0.

Theorem 1.20. Any closed subspace of a reflexive Banach space is reflexive.
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Proof. Let X be a reflexive Banach space and Y ⊂ X a closed subspace. We want to show
that Y is reflexive. Since Y is a Banach space with the induced norm, consider its dual Y ∗.
By the Hahn–Banach theorem, each f ∈ Y ∗ can be extended to an element F ∈ X∗ with
the same norm. Thus, Y ∗ can be identified with the quotient space

X∗/Y ⊥,

where
Y ⊥ = {F ∈ X∗ : F (y) = 0 for all y ∈ Y }.

Taking duals again, we have
(Y ∗)∗ ∼= (X∗/Y ⊥)∗.

From basic duality theory, the dual of a quotient space is isometrically isomorphic to the
annihilator of the quotient, that is,

(X∗/Y ⊥)∗ ∼= (Y ⊥)⊥ ⊂ X∗∗.

Because X is reflexive, we have X∗∗ ∼= X. Hence

(Y ∗)∗ ∼= (Y ⊥)⊥ ⊂ X.

But (Y ⊥)⊥ is exactly the weak-* closure of Y in X∗∗, which equals Y since Y is closed in X.
Thus

(Y ∗)∗ ∼= Y,

so Y is reflexive.

Lemma 1.4 (Riesz’s Lemma). Let X be a normed space and Y ⊂ X be a proper closed
subspace (Y 6= X). Then for every 0 < α < 1, there exists x ∈ X such that

‖x‖ = 1 and dist(x, Y ) > α,

where
dist(x, Y ) := inf

y∈Y
‖x− y‖.

Proof. Since Y 6= X, there exists z ∈ X \ Y . Because Y is closed, the distance

d := dist(z, Y ) = inf
y∈Y
‖z − y‖ > 0.

Choose y0 ∈ Y such that
‖z − y0‖ <

d

1− α.

Define
x := z − y0

‖z − y0‖
.

Then ‖x‖ = 1. For any y ∈ Y , we have y + y0 ∈ Y , so

‖x− y‖ = ‖z − y0 − ‖z − y0‖y‖
‖z − y0‖

.

By the choice of y0, one shows that dist(x, Y ) > α. Hence, such an x exists, which completes
the proof.
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Using Riesz’s lemma, in an infinite-dimensional normed space X we can find a sequence
(xn) ⊂ BX such that

‖xn‖ = 1 and ‖xn − xm‖ ≥
1
2 for n 6= m.

This sequence has no convergent subsequence. Hence BX is never compact (in the strong
topology) provided that X is infinite-dimensional.

1.11 Compact Operators
Definition 1.9. T : X → Y is compact if it maps bounded sets to relatively compact sets.

The following are equivalent ways to characterize when a linear operator T is compact:

1. T is a compact operator.

2. For every bounded sequence (xn) ⊂ X, there exists a subsequence (xnk
) such that

(Txnk
) converges in Y .

We denote by K(X, Y ) the set of all compact operators.

Theorem 1.21. Let X be a normed space, Y a Banach space, and (Tn) a sequence of
compact operators Tn : X → Y such that Tn → T in the operator norm. Then T is also a
compact operator, i.e. T ∈ K(X, Y ). In other words, K(X, Y ) is a closed linear subspace of
α(X, Y ) .

Proof. Take any ε > 0. By the compactness properties, it is enough to prove that the set
for any ε, the set T (BX(0, 1)) can be covered by finitely many balls in Y of radius ε (i.e. it
is totally bounded). Since Tn → T in the operator norm, we can choose an index m1 such
that

‖Tm1 − T‖ <
ε

2 . (1)

Since Tm1 is compact, there exist points z1, . . . , zk ∈ Y such that

Tm1(BX(0, 1)) ⊂
k⋃
j=1

BY (zj, ε/2). (2)

Now, for every x ∈ BX(0, 1), from (1) and (2) we can find an index j with

‖T (x)− zj‖Y ≤ ‖T (x)− Tm1(x)‖Y + ‖Tm1(x)− zj‖Y <
ε

2 + ε

2 = ε.

Hence
T (BX(0, 1)) ⊂

k⋃
j=1

BY (zj, ε).

This shows that T (BX(0, 1)) is totally bounded, and therefore T is compact.

Definition 1.10. A linear operator T : X → Y is said to have finite rank if its range
R(T ) := T (X) is a finite-dimensional subspace of Y .
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If we take vectors y1, . . . , ym ∈ Y and bounded linear functionals λ1, . . . , λm ∈ X∗, then
the operator

Tx =
m∑
i=1

λi(x) yi (∗)

has finite rank because its range is contained in the finite-dimensional subspace of Y spanned
by y1, . . . , ym.

Lemma 1.5. Every finite rank operator can be written in the form (∗).

Proof. Let y1, . . . , ym ∈ Y be a basis of R(T ). Any element y ∈ R(T ) can be uniquely
expressed as

y = c1y1 + · · ·+ cmym,

where the coefficients ci depend linearly and continuously on y. These coefficients define
bounded linear functionals ci : R(T )→ R. Thus, for any y ∈ R(T ) we have

y = c1(y)y1 + · · ·+ cm(y)ym.

In particular, for all x ∈ X,

Tx = c1(Tx)y1 + · · ·+ cm(Tx)ym.

Hence T has the form (∗) if we define λi(x) = ci(Tx).

Theorem 1.22. Every finite rank operator T : X → Y is compact.

Proof. Take any bounded sequence {xn} ⊂ X. Then the sequence {Txn} ⊂ Y is bounded
and lies in R(T ). Since R(T ) is finite-dimensional, every bounded sequence in R(T ) has a
convergent subsequence. Therefore T is compact.

Let X and Y be Banach spaces. A bounded linear operator

T : X → Y

is called a Fredholm operator if the following conditions hold:

1. The kernel ker(T ) = {x ∈ X : Tx = 0} is finite-dimensional.

2. The range R(T ) = {Tx : x ∈ X} is closed in Y .

3. The cokernel Y/R(T ) is finite-dimensional, i.e.

codim(R(T )) = dim(Y/R(T )) <∞.

The index of a Fredholm operator T is defined as

index(T ) = dim(kerT )− codim(R(T )).

Theorem 1.23 (Atkinson). Let K : X → X be a compact operator on a Banach space X.
Then the operator I −K is Fredholm of index 0.
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1.11.1 Spectrum o a bounded operators

Let X be a real vector space and T : X → X a real linear map. The complexification of X
is

XC = X ⊗R C ∼= {x+ iy | x, y ∈ X}.

The complexification of T , denoted TC, is the map

TC : XC → XC, TC(x+ iy) = Tx+ iTy,

for all x, y ∈ X.

Properties
1. TC is C-linear:

TC
(
(a+ ib)(x+ iy)

)
= TC

(
(ax− by) + i(ay + bx)

)
= T (ax− by) + iT (ay + bx),

which equals
(a+ ib)

(
Tx+ iTy

)
= (a+ ib)TC(x+ iy).

2. TC extends T : if we identify X with X + i0 ⊂ XC, then

TC(x) = T (x).

Definition 1.11. Let X be a normed space and let T ∈ α(X,X). We define:

• The resolvent set of T as

ρ(T ) = {λ ∈ C : λI − T is bijective}.

• The spectrum of T as
σ(T ) = C \ ρ(T ).

• A number λ ∈ C is called an eigenvalue of T if

ker(λI − T ) 6= {0}.

Even though T is real, the spectral parameter λ is taken in C. This is because the
characteristic polynomial of a real matrix or operator may have complex roots.

Note that if λ is an eigenvalue of T if there exists u ∈ X \ {0} such that Tu = λu. This
agrees with the usual definition of eigenvalues for matrices.

Theorem 1.24. Let T ∈ α(X,X) be a bounded linear operator on a Banach space X. Then
the resolvent set ρ(T ) is open.
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Proof. Let λ0 ∈ ρ(T ). Then λ0I − T is invertible. Denote

R0 = (λ0I − T )−1 ∈ α(X,X).

For any λ ∈ C, we can write

λI − T = (λ0I − T ) + (λ− λ0)I = (λ0I − T )
[
I + (λ− λ0)R0

]
.

Since λ0I − T is invertible, the invertibility of λI − T is equivalent to that of

I − (λ0 − λ)R0.

Let M = ‖R0‖. if
|λ− λ0| <

1
M
,

then
‖(λ0 − λ)R0‖ ≤ |λ− λ0| ‖R0‖ < 1.

By the Neumann series (Theorem 1.13), I − (λ0 − λ)R0 is invertible with

(I − (λ0 − λ)R0)−1 =
∞∑
n=0

((λ− λ0)R0)n,

which converges in operator norm. Therefore, for all λ in the disc

B(λ0, 1/‖R0‖) = {λ ∈ C | |λ− λ0| < 1/‖R0‖} ⊂ ρ(T ).

Hence, ρ(T ) is open.

1.11.2 Types of Spectrum

The spectrum can be decomposed into:

1. Point spectrum σp(T ): set of eigenvalues, i.e.

σp(T ) = {λ ∈ C | ker(λI − T ) 6= {0}}.

2. Continuous spectrum σc(T ): λI−T is injective and has dense range, but not surjective.

3. Residual spectrum σr(T ): λI − T is injective, but its range is not dense in X.

Lemma 1.6 (Spectral Radius Formula). Let X be a Banach space and T ∈ α(X,X) be a
bounded linear operator. Then

σ(T ) ⊂ {λ ∈ C : |λ| ≤ ‖T‖}.

Hence σ(T ) is compact.
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Proof. Take any λ ∈ C such that |λ| > ‖T‖. We will prove that λI − T is invertible, which
implies that λ ∈ ρ(T ) and therefore λ /∈ σ(T ). We can write

λI − T = λ
(
I − 1

λ
T
)
.

Because |λ| > ‖T‖, we have ∥∥∥∥1
λ
T
∥∥∥∥ = ‖T‖

|λ|
< 1.

Now we use the Neumann series for A = 1
λ
T . Since ‖A‖ < 1, the Neumann series converges,

so (
I − 1

λ
T
)−1

=
∞∑
n=0

(1
λ
T
)n
.

Hence
(λI − T )−1 = 1

λ

(
I − 1

λ
T
)−1

= 1
λ

∞∑
n=0

(1
λ
T
)n
,

and this series converges in operator norm. Therefore λI − T is invertible, which implies
that λ ∈ ρ(T ). Since this holds for all |λ| > ‖T‖, we conclude that

σ(T ) ⊂ {λ ∈ C : |λ| ≤ ‖T‖}.

Theorem 1.25 (Spectral Theorem for Compact Operators). LetX be an infinite-dimensional
Banach space (complex or real) and T ∈ K(X,X). Then

1. 0 ∈ σ(T );

2. Every λ ∈ σ(T ) \ {0} is an eigenvalue of T ;

3. If σ(T ) is infinite, then σ(T ) = {λn}∞n=1 ∪ {0} with λn → 0 as n→∞.

Proof. (a) If 0 /∈ σ(T ), then T is invertible. But I = TT−1 would then be compact, implying
that the unit ball of X is compact, which contradicts the infinite-dimensionality of X.

(b) Suppose λ 6= 0 is in σ(T ) but is not an eigenvalue. Then λI − T is injective, but
not surjective. Since N(λI − T ) = {0} and λI − T is Fredholm of index 0, we obtain that
R(λI − T ) = X, hence λ ∈ ρ(T ), a contradiction.

(c) Assume that {λn} ⊂ σ(T ) \ {0} is such that λn → λ as n → ∞. Since for each
n ≥ 1, λn is an eigenvalue of T , choose en 6= 0 an eigenvector of T corresponding to λn.
For every n ≥ 1, the eigenvectors e1, e2, . . . , en are linearly independent. We argue by
induction. Suppose e1, . . . , en are linearly independent and consider en+1. If en+1 were a
linear combination of e1, . . . , en, relabeling if necessary, we could write

en+1 =
n∑
i=1

αiei.
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Applying T to both sides,

Ten+1 = λn+1en+1 =
n∑
i=1

αiλn+1ei,

but also
Ten+1 =

n∑
i=1

αiλiei.

Since e1, . . . , en are linearly independent, we get

αi(λi − λn+1) = 0 for all i = 1, . . . , n.

Because λi 6= λn+1, this forces αi = 0 for all i, contradicting en+1 6= 0. Thus the claim is
proved.

Now, we construct a sequence violating compactness. Indeed, set En = span{e1, . . . , en}.
By the claim, the sequence {En} forms a strictly increasing chain of subspaces. By the Riesz
Lemma, for each n ≥ 2 there exists un ∈ En such that

‖un‖ = 1 and dist(un, En−1) ≥ 1
2 .

For n > m ≥ 2, note that

(λnI − T )(En) ⊆ En−1, (λmI − T )(En) ⊆ Em−1.

From this it follows that

Tun
λn
− Tum

λm
∈ un − um + En−1 = un + En−1

and ∥∥∥∥Tunλn
− Tum

λm

∥∥∥∥ ≥ dist(un, En−1) ≥ 1
2 .

Because T is compact and ‖un‖ = 1, the sequence {Tun} must have a convergent subse-
quence. However, the above inequality shows that {Tun} cannot be Cauchy, a contradiction.

Finally, write

σ(T ) \ {0} =
∞⋃
n=1

An, An = σ(T ) ∩ {λ ∈ C : |λ| ≥ 1/n}.

By Step 1, each An is finite, hence σ(T ) is at most countable. If σ(T ) is infinite, then 0 is
its only accumulation point. This completes the proof.

Corollary 1.5. Let T : X → X be a compact operator on a Banach space X. Then every
λ ∈ σ(T ) \ {0} is an eigenvalue of T , and its eigenspace ker(T − λI) is finite-dimensional.

Proof. Since ker(λI − T ) 6= {0} and λI − T is Fredholm, dim ker(T − λI) <∞. Hence the
eigenvalue λ has finite multiplicity.
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Remark 1.3. Although 0 is always in the spectrum σ(T ) when X is infinite-dimensional,
it is not always in the continuous spectrum σc(T ).

• If T is not injective, then 0 is an eigenvalue (point spectrum).

0 ∈ σp(T ) ⇐⇒ ker(T ) 6= {0}.

• If T is injective but not surjective, and Ran(T ) = X, then

0 ∈ σc(T ),

i.e. 0 lies in the continuous spectrum.

• If T is injective but Ran(T ) 6= X, then 0 is in the residual spectrum.

Remark 1.4. In finite-dimensional spaces, linear maps T are precisely matrices. In this
case, the spectrum consists only of eigenvalues:

σ(T ) = σp(T ),

and there is no continuous spectrum and no residual spectrum

Examples
Example 1.6. Let T : `2 → `2 be defined by

T (x1, x2, x3, . . . ) =
(
x1

2 ,
x2

3 ,
x3

4 , . . .
)
.

Each λn = 1/(n + 1) is an eigenvalue with eigenvector en. The value 0 is not an eigenvalue
(no nonzero vector is mapped to 0), but it is in the spectrum as an accumulation point. The
point spectrum (set of eigenvalues) is {1/2, 1/3, 1/4, . . . }, and 0 belongs to the continuous
spectrum.

Example 1.7. Consider the right shift operator S : `2 → `2 defined by

S(x1, x2, x3, . . . ) = (0, x1, x2, . . . ).

Observe that 0 is not an eigenvalue, since Sx = 0 =⇒ x = 0. The range is not dense, so 0
is not in the continuous spectrum. Hence,

0 ∈ σr(S),

that is, 0 lies in the residual spectrum of S.

Example 1.8. The operator T : C[0, 1]→ C[0, 1], defined by

(Tf)(x) =
∫ x

0
f(y) dy,

is is compact and there are no eigenvalues of T . σ(T ) = σc(T ) = {0}.
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1.11.3 Adjoint Operator in complex Banach Spaces

Let X be a Banach space, and let X∗ denote its dual space. If T : X → X is a bounded
linear operator, its adjoint operator

T ∗ : X∗ → X∗

is defined by
(T ∗f)(x) = f(Tx) for all f ∈ X∗, x ∈ X.

Equivalently, T ∗f = f ◦ T .

Lemma 1.7 (Properties of the Adjoint Operator). Let T, S ∈ α(X,X) be bounded linear
operators on a Banach space X, and let α ∈ C. Then:

1. Linearity: (S + T )∗ = S∗ + T ∗, (αT )∗ = αT ∗.

2. Norm equality: ‖T ∗‖ = ‖T‖.

3. Composition rule: (S ◦ T )∗ = T ∗ ◦ S∗.

4. Double adjoint: If J : X → X∗∗ is the canonical embedding, then

J ◦ T = T ∗∗ ◦ J,

where T ∗∗ : X∗∗ → X∗∗ is the double adjoint.

5. If X is reflexive (i.e. J is surjective), then T ∗∗ can be naturally identified with a
bounded operator on X itself.
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1.12 Hilbert Spaces, Projections and Orthogonality
A Hilbert space is a complete inner product space.

Definition 1.12 (Complex Hilbert Space). A complex Hilbert space is a vector space H over
the field of complex numbers C, equipped with an inner product

〈·, ·〉 : H ×H → C,

which satisfies, for all x, y, z ∈ H and α, β ∈ C:

1. Conjugate symmetry: 〈x, y〉 = 〈y, x〉.

2. Linearity in the first argument: 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉.

3. Positive-definiteness: 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0.

The inner product induces a norm by

‖x‖ =
√
〈x, x〉.

The space H is called a Hilbert space if it is complete with respect to this norm, i.e., every
Cauchy sequence in H converges to a limit in H.

Lemma 1.8 (Parallelogram Law). For any x, y ∈ H,

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Proof. By the definition of the norm induced by the inner product:

‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + 2Re〈x, y〉+ ‖y‖2,

‖x− y‖2 = 〈x− y, x− y〉 = ‖x‖2 − 2Re〈x, y〉+ ‖y‖2.

Adding these two equalities gives:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Definition 1.13. A normed space X is called uniformly convex if for every ε > 0, there
exists δ > 0 such that for all x, y ∈ X with

‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε,

it holds that ∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.

Theorem 1.26. Every Hilbert space is uniformly convex.

31



Proof. Let H be a Hilbert space. Suppose ‖x‖ = ‖y‖ = 1. Then using the parallelogram
law: ∥∥∥∥x+ y

2

∥∥∥∥2
= 1

2(‖x‖2 + ‖y‖2)− 1
4‖x− y‖

2 = 1− 1
4‖x− y‖

2.

If ‖x− y‖ ≥ ε, then:
∥∥∥∥x+ y

2

∥∥∥∥2
≤ 1− ε2

4 ⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤
√

1− ε2

4 < 1.

So for any ε > 0, choosing δ = 1−
√

1− ε2

4 > 0 shows uniform convexity.

Theorem 1.27. Every uniformly convex Banach space is reflexive.

This is a classical result in functional analysis. It follows from the Milman–Pettis theorem,
which shows that the closed unit ball in a uniformly convex Banach space is weakly compact,
implying reflexivity by the Eberlein–Šmulian theorem. We leave this theorem without proof.

Corollary 1.6. Every Hilbert space is reflexive.

Theorem 1.28 (Cauchy–Schwarz Inequality). Let H be a Hilbert space. For all x, y ∈ H,
we have

|〈x, y〉| ≤ ‖x‖ · ‖y‖.
Equality holds if and only if x and y are linearly dependent.

Proof. If x = 0 or y = 0, then both sides are zero, and the inequality holds trivially. Assume
x 6= 0 and y 6= 0. Define a scalar λ ∈ C as

λ := 〈x, y〉
‖y‖2 .

Now consider the norm of the vector x− λy. Since norms are always non-negative, we have

0 ≤ ‖x− λy‖2 = 〈x− λy, x− λy〉.

Expanding using linearity of the inner product:

‖x− λy‖2 = 〈x, x〉 − λ〈x, y〉 − λ〈y, x〉+ |λ|2〈y, y〉.

Note that 〈y, x〉 = 〈x, y〉, and 〈y, y〉 = ‖y‖2. Substitute:

= ‖x‖2 − λ〈x, y〉 − λ〈x, y〉+ |λ|2‖y‖2.

Since λ = 〈x, y〉/‖y‖2, we compute:

|λ|2‖y‖2 = |〈x, y〉|
2

‖y‖2 .

Also,
λ〈x, y〉+ λ〈x, y〉 = 2Re(λ〈x, y〉) = 2 |〈x, y〉|

2

‖y‖2 .
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Putting it all together:

‖x− λy‖2 = ‖x‖2 − 2 |〈x, y〉|
2

‖y‖2 + |〈x, y〉|
2

‖y‖2 = ‖x‖2 − |〈x, y〉|
2

‖y‖2 .

Since ‖x− λy‖2 ≥ 0, we get:

‖x‖2 − |〈x, y〉|
2

‖y‖2 ≥ 0,

which implies:
|〈x, y〉|2 ≤ ‖x‖2 · ‖y‖2.

Taking square roots gives:
|〈x, y〉| ≤ ‖x‖ · ‖y‖.

Equality: Equality holds if and only if ‖x − λy‖2 = 0, i.e., x = λy, so x and y are linearly
dependent.

Theorem 1.29 (Projection Theorem). Let H be a Hilbert space and M ⊆ H a closed
subspace. Then for every x ∈ H there exists a unique decomposition

x = y + z,

where y ∈M and z ∈M⊥. Equivalently, there exists a unique y ∈M such that

‖x− y‖ = inf
m∈M

‖x−m‖.

Proof. Existence. Fix x ∈ H. Consider the set

d = inf
m∈M

‖x−m‖.

Because M is closed and H is complete, there exists a sequence (mn) ⊆M such that

‖x−mn‖ → d as n→∞.

Since ‖x−mn‖ is bounded, (mn) is a bounded sequence in H. Note that

‖(x−mn) + (x−mk)‖ = 2
∥∥∥∥x− mn +mk

2

∥∥∥∥ ≥ 2d

and by Lemma 1.8,

‖(x−mn)− (x−mk)‖2 + ‖(x−mn) + (x−mk)‖2 = 2‖(x−mn)‖2 + 2‖(x−mk)‖2.

It follows that (mn) is Cauchy. Because M is closed, the limit y = limn→∞mn exists and
lies in M . Thus ‖x− y‖ = d, so y is a minimizer.

Orthogonality. Let z = x− y. We show that z ∈ M⊥. Take any m ∈ M . For any scalar
t ∈ R,

‖x− (y + tm)‖2 = ‖z − tm‖2 = ‖z‖2 − 2tRe 〈z,m〉+ t2‖m‖2.
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Because y minimizes the distance, the function f(t) = ‖x − (y + tm)‖2 has a minimum at
t = 0, hence f ′(0) = 0.

Differentiating:
f ′(t) = −2Re 〈z,m〉+ 2t‖m‖2.

Thus f ′(0) = −2Re 〈z,m〉 = 0, giving 〈z,m〉 = 0. Hence z ∈M⊥.
Uniqueness. Suppose x = y1 + z1 = y2 + z2 with y1, y2 ∈M and z1, z2 ∈M⊥. Then

(y1 − y2) = (z2 − z1).

The left side is in M , the right side in M⊥. Hence both sides are in M ∩M⊥ = {0}, so
y1 = y2 and z1 = z2.

1.13 Riesz Representation Theorem
Theorem 1.30 (Riesz). If H is a Hilbert space, then for every f ∈ H∗, there exists a unique
y ∈ H such that f(x) = 〈x, y〉. Moreover,

‖f‖ = ‖y‖.

Proof. If f = 0, then take y = 0.
Assume f 6= 0. Then ker(f) is a closed proper subspace of H. By the projection theorem,
we can choose a vector z ∈ H such that

z ⊥ ker(f), z 6= 0.

For any x ∈ H, we can write x = u+ αz, where u ∈ ker(f) and α ∈ C. Then

f(x) = f(u+ αz) = f(u) + αf(z) = αf(z),

since f(u) = 0 for u ∈ ker(f). We define

y = f(z)
‖z‖2 z.

For any x ∈ H,

〈x, y〉 =
〈
u+ αz,

f(z)
‖z‖2 z

〉
= α

f(z)
‖z‖2 〈z, z〉 = αf(z) = f(x).

Thus, such y exists.
Uniqueness: If y1, y2 ∈ H satisfy f(x) = 〈x, y1〉 = 〈x, y2〉 for all x, then 〈x, y1 − y2〉 = 0 for
all x. Taking x = y1 − y2, we get ‖y1 − y2‖2 = 0, hence y1 = y2.
Norm equality: By the Cauchy–Schwarz inequality,

|f(x)| = |〈x, y〉| ≤ ‖x‖ ‖y‖,

so ‖f‖ ≤ ‖y‖. Taking x = y/‖y‖ (if y 6= 0) gives ‖f‖ ≥ ‖y‖. Hence ‖f‖ = ‖y‖.
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1.14 Spectral Decomposition of Self-Adjoint Compact Operators
Theorem 1.31. Let H be a Hilbert space. Then any compact operator T ∈ K(H,H)
is the norm limit of a sequence of finite-rank operators. That is, there exists a sequence
(Tn) ⊂ K(H,K), each of finite rank, such that

‖T − Tn‖ → 0 as n→∞.

Proof. Since T : H → H is compact, the image of the unit ball BH = {x ∈ H : ‖x‖ ≤ 1}
under T , denoted T (BH), has compact closure in H. Thus, for any ε > 0, there exists a finite
set {y1, . . . , yn} ⊂ T (BH) such that every Tx ∈ T (BH) can be approximated within ε by
some yj. Let Fε be the finite-dimensional subspace spanned by these yj, and let Pε : H → Fε
be the orthogonal projection.
Now, define the operator

Tε = PεT.

Then Tε is a finite-rank operator, since R(Tε) ⊂ Fε. Observe that, for all x ∈ BH ,

‖Tx− Tεx‖ = ‖Tx− PεTx‖ ≤ ε.

Hence,‖T − Tε‖ ≤ ε. Since ε > 0 was arbitrary, this shows that Tε → T in norm, and each
Tε is a finite-rank operator.

1.14.1 Is spectrum real?

Definition 1.14. Let H be a complex Hilbert space. A bounded linear operator T : H → H
is called self-adjoint (or Hermitian) if

〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ H,

equivalently, T = T ∗ where T ∗ is the adjoint operator of T .

Theorem 1.32. Let H be a complex Hilbert space and let T : H → H be a bounded linear
operator such that T = T ∗ (i.e., T is self-adjoint). Then

σ(T ) ⊆ R and ‖T‖ = r(T ),

where r(T ) := sup{|λ| : λ ∈ σ(T )} denoted the spectral radius of T .

Proof. Let λ ∈ C \ R. We will show that λI − T is invertible, which implies that λ /∈ σ(T ).
Write λ = α + iβ with α ∈ R and β ∈ R \ {0}. For any x ∈ H,

‖(λI − T )x‖2 = 〈(λI − T )x, (λI − T )x〉.

Since T = T ∗, we have
(λI − T )∗ = (λI − T ).

Thus
‖(λI − T )x‖2 = 〈(λI − T )(λI − T )x, x〉.
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Expanding gives
(λI − T )(λI − T ) = (αI − T )2 + β2I.

Hence
‖(λI − T )x‖2 = ‖(αI − T )x‖2 + |β|2‖x‖2.

Since |β|2 > 0, we obtain
‖(λI − T )x‖2 ≥ |β|2‖x‖2,

which shows that λI −T is injective and has closed range. Its range is also dense, indeed let
y ∈ R(λI − T )⊥, i.e.

〈(λI − T )x, y〉 = 0 for all x ∈ H.
This implies

〈x, (λI − T )∗y〉 = 0 for all x ∈ H.
Thus (λI − T )∗y = 0. Since T = T ∗, we have

(λI − T )∗ = λI − T

so
(λI − T )y = 0.

Now compute the inner product:

〈(λI − T )y, y〉 = 0.

So we have:
〈Ty, y〉 = λ‖y‖2.

Since 〈Ty, y〉 ∈ R, we get y = 0.
As the range is also closed, it follows that R(T − λI) = H. Therefore T − λI is bijective

and has a bounded inverse. Thus every λ ∈ C\R lies in the resolvent set ρ(T ). Consequently,

σ(T ) ⊆ R.

It is always true that:
r(T ) := sup{|λ| : λ ∈ σ(T )} ≤ ‖T‖.

We show the reverse inequality for self-adjoint T . The spectral theorem provides a spectral
measure E (see Section 1.14.2 below) such that:

T =
∫
σ(T )

λ dE(λ).

Then for any u ∈ H, ‖u‖ = 1, we have

〈Tu, u〉 =
∫
σ(T )

λ dµu(λ), where µu(·) := 〈E(·)u, u〉.

Using this representation:

‖Tu‖2 =
∫
σ(T )

λ2 dµu(λ) ≤ sup
λ∈σ(T )

λ2.
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Taking supremum over all unit vectors

‖T‖2 ≤ sup
λ∈σ(T )

λ2, ⇒ ‖T‖ ≤ sup
λ∈σ(T )

|λ| = r(T ).

Hence
‖T‖ = r(T ).

1.14.2 Comments on spectral measure

Let H be a complex Hilbert space, and let T : H → H be a bounded self-adjoint operator
(i.e., T = T ∗). The spectral theorem for such operators tells us that there is a way to write
T as an infinite-dimensional diagonal operator– using an integral over its spectrum rather
than a sum over eigenvalues.

Theorem 1.33 (Spectral Theorem). Let H be a complex Hilbert space and let T ∈ α(H,H)
be a bounded self-adjoint operator (T = T ∗). Then there exists a unique projection-valued
measure

E : B(R) −→ α(H,H)

on the Borel subsets of R, supported on the spectrum σ(T ), such that:

1. Spectral representation:
T =

∫
σ(T )

λ dE(λ)

where the integral is understood in the sense of the strong operator topology.

2. Functional calculus: For every bounded Borel measurable function f : σ(T )→ C, there
exists a bounded operator

f(T ) =
∫
σ(T )

f(λ) dE(λ)

satisfying
‖f(T )‖ ≤ sup

λ∈σ(T )
|f(λ)|.

3. Scalar spectral measures: For each u ∈ H, the map

µu(B) := 〈E(B)u, u〉

defines a positive Borel measure on R such that

〈f(T )u, u〉 =
∫
σ(T )

f(λ) dµu(λ)

for all bounded Borel measurable f .

Moreover, the spectral measure E is uniquely determined by T .
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In other words, the spectral theorem states that there exists a spectral measure assigning
a projection operator E(B) ∈ α(H,H) to each Borel set B ⊂ R, such that

T =
∫
σ(T )

λ dE(λ).

This integral is an operator-valued integral, and it gives a complete representation of T
in terms of its spectral properties.

This is a generalization of the concept of spectral decomposition in finite-dimensional
spaces.

Given u ∈ H, the scalar-valued measure

µu(B) := 〈E(B)u, u〉

is a positive Borel measure on R. It allows us to represent quantities like:

〈Tu, u〉 =
∫
σ(T )

λ dµu(λ), ‖Tu‖2 =
∫
σ(T )

λ2 dµu(λ).

This turns inner products and norms into integrals — a key tool in spectral analysis.

• It lets us treat T as a “diagonal” operator, even in infinite dimensions.

• It provides a natural way to define functions of operators:

f(T ) :=
∫
σ(T )

f(λ) dE(λ),

for any bounded Borel measurable function f : R→ C.

• It reveals how different parts of the spectrum influence the behavior of T .

In Rn, a symmetric matrix T can be diagonalized as:

T =
n∑
i=1

λiPi,

where λi are the eigenvalues, and Pi are projections onto the corresponding eigenspaces.
In the infinite-dimensional case, the sum becomes an integral:

T =
∫
σ(T )

λ dE(λ),

where E(·) plays the role of continuous projections indexed by subsets of σ(T ).
This generalizes the diagonalization of symmetric matrices and is fundamental to quan-

tum mechanics, PDEs, and functional analysis.
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1.14.3 Spectral properties of self-adjoint operators

Theorem 1.34. If T ∈ α(H,H) is self-adjoint, then the residual spectrum is empty:

σr(T ) = ∅.

Proof. Assume λ ∈ R and T − λI is injective, but R(λI − T ) is not dense in H. Then there
exists v ∈ R(λI − T )⊥ \ {0} such that

〈(λI − T )u, v〉 = 0 for all u ∈ H.

By the definition of the adjoint and the fact that T = T ∗, we have

〈u, (λI − T )v〉 = 0 for all u ∈ H.

Hence,
(λI − T )v = 0 ⇒ v ∈ ker(λI − T ).

This contradicts the assumption that λI − T is injective. Therefore, our assumption that
R(λI − T ) is not dense must be false.

Theorem 1.35 (Weyl’s Criterion for the Continuous Spectrum). Let T ∈ α(H,H) be a
bounded self-adjoint operator on a Hilbert space H, and let λ ∈ R. Then λ ∈ σc(T ) (the
continuous spectrum of T ) if and only if:

• T − λI is injective (i.e., ker(T − λI) = {0}),

• There exists a sequence {un} ⊂ H with ‖un‖ = 1 such that

‖(T − λI)un‖ → 0 as n→∞.

Proof. (⇒) Suppose λ ∈ σc(T ). Then:

• λI − T is injective,

• R(λI − T ) = H, but

• R(λI − T ) 6= H, so T − λI is not surjective.

Thus, (λI − T ) is injective but does not have a bounded inverse. Hence, there exists a
sequence yn ∈ R(λI−T ), with ‖yn‖ → 0, such that the preimages xn = (λI−T )−1yn satisfy
‖xn‖ ≥ δ > 0. Define un := xn/‖xn‖, then ‖un‖ = 1, and

‖(λI − T )un‖ =
∥∥∥∥∥ yn
‖xn‖

∥∥∥∥∥→ 0,

since ‖yn‖ → 0. Hence, {un} is a Weyl sequence for λ.
(⇐) Now suppose λ ∈ R, λI − T is injective, and there exists {un} ⊂ H with ‖un‖ = 1,

and
‖(λI − T )un‖ → 0.

We show that λ ∈ σc(T ). Suppose for contradiction that λ /∈ σc(T ). Then either:
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1. λ ∈ ρ(T ), i.e., T − λI is bijective with bounded inverse, or

2. λ ∈ σp(T ), i.e., T − λI is not injective.

Case (2) contradicts our assumption that T − λI is injective. In Case (1), if (T − λI)−1

exists and is bounded, then

un = (T − λI)−1(T − λI)un → 0,

since ‖(T − λI)un‖ → 0, and the inverse is bounded. But this contradicts ‖un‖ = 1 for all
n. Therefore, λ /∈ ρ(T ) or σp(T ), so it must be in σc(T ).

Theorem 1.36. Let H be a Hilbert space, and let T ∈ α(H,H) be a bounded self-adjoint
operator. Then the operator norm of T is given by

‖T‖ = sup
‖u‖=1

|〈Tu, u〉|

and
‖T‖ = r(T ) := sup{|λ| : λ ∈ σ(T )}.

Proof. Let ‖u‖ = 1. Since T is self-adjoint, we have 〈Tu, u〉 ∈ R, and by the Cauchy–Schwarz
inequality:

|〈Tu, u〉| ≤ ‖Tu‖ · ‖u‖ = ‖Tu‖ ≤ ‖T‖.
Hence

sup
‖u‖=1

|〈Tu, u〉| ≤ ‖T‖.

To prove the reverse inequality, we use Theorem 1.34 and Theorem 1.35. Indeed, for ε > 0,
there exists a unit vector uε ∈ H such that

|〈Tuε, uε〉| > ‖T‖ − ε.

Therefore:
sup
‖u‖=1

|〈Tu, u〉| ≥ ‖T‖ − ε.

Since this holds for all ε > 0, we conclude:

sup
‖u‖=1

|〈Tu, u〉| = ‖T‖.

This result shows that for self-adjoint operators, the norm and spectral radius coincide,
and both can be computed using the maximum absolute value of 〈Tu, u〉 over unit vectors.
This reflects the fact that self-adjoint operators behave much like real symmetric matrices
in finite-dimensional spaces.

Definition 1.15 (Numerical Range). Let H be a complex Hilbert space and T ∈ α(H,H).
The numerical range of T is

W (T ) := {〈Tu, u〉 : u ∈ H, ‖u‖ = 1}.
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Theorem 1.37 (Toeplitz–Hausdorff). For any bounded linear operator T ∈ α(H,H) on a
complex Hilbert space H, the numerical range W (T ) is a convex subset of C. Moreover
σ(T ) ⊂ W (T ).

Theorem 1.38. Let H be a Hilbert space, and let T ∈ α(H,H) be a bounded self-adjoint
operator. Define:

M := sup
‖u‖=1

〈Tu, u〉, m := inf
‖u‖=1

〈Tu, u〉.

Then:

(a) The norm of T satisfies
‖T‖ = max{|m|, |M |}.

(b) The spectrum σ(T ) ⊂ R lies in the interval [m,M ], and both endpoints belong to the
spectrum:

{m,M} ⊂ σ(T ) ⊂ [m,M ].

Proof. (a) Since T is self-adjoint, all values 〈Tu, u〉 with ‖u‖ = 1 are real. It is known that:

‖T‖ = sup
‖u‖=1

|〈Tu, u〉|.

Hence
‖T‖ = max{|M |, |m|}.

(b) For self-adjoint operators, W (T ) ⊂ R, and W (T ) is convex. Moreover, the spectrum of
T is contained in the closure of the numerical range:

σ(T ) ⊂ W (T ) = [m,M ].

To show that m,M ∈ σ(T ), suppose for contradiction that M /∈ σ(T ). Then the operator
(T −MI) is bounded and invertible. That implies there exists δ > 0 such that:

‖(T −MI)u‖ ≥ δ‖u‖ for all u ∈ H.

But then:
〈Tu, u〉 = 〈(MI + (T −MI))u, u〉 = M‖u‖2 + 〈(T −MI)u, u〉.

So for ‖u‖ = 1, we get:
〈Tu, u〉 < M − ε for some ε > 0,

contradicting the definition of M as the supremum. Therefore, M ∈ σ(T ), and a similar
argument shows m ∈ σ(T ). Thus:

σ(T ) ⊂ [m,M ], {m,M} ⊂ σ(T ).

Remark 1.5. This result is fundamental in spectral theory. Part (a) gives a simple way
to compute the norm of a self-adjoint operator. Part (b) says that the spectrum, which
describes the values associated with the operator, lies within the interval of the smallest and
largest expected values 〈Tu, u〉, and includes the endpoints.
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1.14.4 Orthonormal basis

Definition 1.16. Let H be a Hilbert space. A sequence {en}∞n=1 ⊂ H is called an orthonor-
mal basis of H (or a Hilbert basis of H) if:

(a) 〈en, em〉 = δmn for all m,n ∈ N;

(b) the linear span of {en}∞n=1 is dense in H.

Lemma 1.9. Let H be a Hilbert space and let {en}∞n=1 ⊂ H be an orthonormal basis of H.
Then for any u ∈ H, we have

u =
∞∑
n=1
〈u, en〉en,

and
‖u‖2

H =
∞∑
n=1
|〈u, en〉|2.

Proof. Since {en} is an orthonormal basis of H, by definition the linear span of {en} is dense
in H. Define the partial sums:

uN :=
N∑
n=1
〈u, en〉en.

Each uN lies in the finite-dimensional subspace spanned by {e1, . . . , eN}, so uN ∈ H. Now
we compute the norm of the difference:

‖u− uN‖2 =
∥∥∥∥∥u−

N∑
n=1
〈u, en〉en

∥∥∥∥∥
2

.

Using the Pythagorean theorem (since the projection onto the subspace is orthogonal), we
get:

‖u‖2 = ‖uN‖2 + ‖u− uN‖2.

Hence:
‖u− uN‖2 = ‖u‖2 −

N∑
n=1
|〈u, en〉|2.

This shows that: ∞∑
n=1
|〈u, en〉|2 ≤ ‖u‖2.

But since {en} is an orthonormal basis (not just orthonormal), we also know that if ‖u −
uN‖ → 0, then uN → u in norm. Therefore:

lim
N→∞

uN = u.

This proves the first identity:
u =

∞∑
n=1
〈u, en〉en.
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Substituting this into the norm yields:

‖u‖2 =
〈 ∞∑
n=1
〈u, en〉en, u

〉
=
∞∑
n=1
〈u, en〉〈en, u〉 =

∞∑
n=1
|〈u, en〉|2.

Thus, both identities are proven.

Theorem 1.39. Every separable Hilbert space possesses an orthonormal basis.

Proof. Since the Hilbert spaceH is separable, there exists a countable dense subset, which we
denote by {vn}∞n=1 ⊂ H. For each positive integer n, let Fn represent the finite-dimensional
subspace of H consisting of all linear combinations of the first n vectors:

Fn = span{v1, v2, . . . , vn}.

Define
F =

∞⋃
n=1

Fn.

Since {vn} is dense in H, so is F . We now apply the Gram-Schmidt orthonormalization
procedure to construct an orthonormal set from {vn} that spans a dense subspace in H.
Begin by choosing e1 ∈ F1 with ‖e1‖ = 1. Assume that we have already constructed an
orthonormal set {e1, . . . , ek} ⊂ F . If Fk+1 contains a vector not in the span of {e1, . . . , ek},
we can find such a vector and orthonormalize it against the existing ones to produce ek+1,
thereby extending our orthonormal set. Continuing this process inductively, we obtain a
countable orthonormal set {en}∞n=1 ⊂ H whose linear combinations are dense in H, meaning
that it forms an orthonormal basis.

Theorem 1.40. Let H be a Hilbert space, and let T : H → H be a compact, self-adjoint
linear operator. Then there exists an orthonormal basis of H consisting of eigenvectors of
T . Moreover, all the corresponding eigenvalues are real and the only possible accumulation
point of the spectrum σ(T ) is zero.

Proof. Use the spectral theorem for compact operators and the fact that self-adjointness
guarantees real eigenvalues and orthogonality of eigenspaces. Indeed we sonsider the follow-
ing steps.
Step 1: Properties of compact self-adjoint operators. Since T is self-adjoint, the spectrum
σ(T ) ⊂ R. As a compact operator on an infinite-dimensional Hilbert space, its spectrum
consists of a countable set of real eigenvalues with only possible accumulation point at zero.
Moreover, every nonzero element of σ(T ) is an eigenvalue with finite multiplicity.
Step 2: Existence of a maximal eigenvalue. Consider the quantity:

λ1 := sup {|〈Tx, x〉| : x ∈ H, ‖x‖ = 1} .

By the Riesz representation theorem and compactness of T , this supremum is attained.
Thus, there exists x1 ∈ H, ‖x1‖ = 1, such that:

〈Tx1, x1〉 = λ1.
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We now show that x1 is an eigenvector. Define the functional φ(x) := 〈Tx, x1〉. Since T is
self-adjoint,

〈Tx1, x〉 = 〈x1, Tx〉 = 〈Tx, x1〉 = φ(x).

Then φ is continuous and linear, hence by Riesz, there exists y ∈ H such that φ(x) = 〈x, y〉.
But then 〈Tx1 − y, x〉 = 0 for all x ∈ H, so Tx1 = y = λ1x1. Hence, x1 is an eigenvector
with eigenvalue λ1.
Step 3: Orthogonal decomposition. Let H1 := span{x1}, and consider H⊥1 , the orthogonal
complement of H1. Since T is self-adjoint, H⊥1 is invariant under T : if x ∈ H⊥1 , then for any
y ∈ H1,

〈Ty, x〉 = 〈y, Tx〉 = 0,

so Tx ∈ H⊥1 . Restrict T to H⊥1 , denoted T |H⊥1 , which is still compact and self-adjoint.
Repeating the argument, there exists a unit vector x2 ∈ H⊥1 such that Tx2 = λ2x2 for some
λ2 ∈ R. Proceed inductively: at each step, define Hn := span{x1, . . . , xn}, and consider H⊥n ,
which is invariant under T , and on which T remains compact and self-adjoint. If T |H⊥n 6= 0,
then there exists a unit eigenvector xn+1 ∈ H⊥n such that Txn+1 = λn+1xn+1.
Step 4: Completeness. This process produces an orthonormal set {xn} of eigenvectors of T
with corresponding eigenvalues λn ∈ R, possibly zero. Suppose the closed span of {xn} is
a proper subspace M ( H. Then M⊥ 6= {0}, and T |M⊥ is again compact and self-adjoint.
But by construction, T |M⊥ = 0, since we exhausted all eigenvectors. Hence, for all x ∈M⊥,
Tx = 0. So x is an eigenvector with eigenvalue 0. Thus, including such vectors, we obtain a
complete orthonormal set of eigenvectors of T .
Conclusion: The set {xn} (including all with eigenvalue 0) forms an orthonormal basis for
H, and each xn is an eigenvector of T . Therefore, T is diagonalizable in an orthonormal
basis of eigenvectors, completing the proof.

Remark 1.6. This theorem fails for general bounded self-adjoint operators that are not
compact. For example, the identity operator on an infinite-dimensional Hilbert space is
self-adjoint but has no eigenvalues.

1.15 Coercivity and Lax-Milgram theorem
This result is fundamental in the theory of weak (variational) solutions to PDEs. It ensures
that, under mild conditions, variational formulations of boundary value problems have unique
solutions as we shall see later.

Theorem 1.41 (Lax-Milgram). Let H be a real Hilbert space, and let a : H ×H → R be
a bilinear form satisfying:

• Boundedness: There exists a constant M > 0 such that

|a(u, v)| ≤M‖u‖‖v‖ for all u, v ∈ H.

• Coercivity: There exists a constant α > 0 such that

a(u, u) ≥ α‖u‖2 for all u ∈ H.
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Then, for every functional f ∈ H∗, there exists a unique u ∈ H such that

a(u, v) = f(v) for all v ∈ H.

Proof. Since f ∈ H∗, by the Riesz Representation Theorem, there exists a unique w ∈ H
such that

f(v) = 〈v, w〉 for all v ∈ H.

Define an operator A : H → H by the condition:

〈Au, v〉 = a(u, v) for all v ∈ H.

We first show A is well-defined and bounded. From the boundedness of a, for all u ∈ H:

‖Au‖ = sup
‖v‖=1

|a(u, v)| ≤M‖u‖.

Next, we show A is coercive:

〈Au, u〉 = a(u, u) ≥ α‖u‖2.

Hence, A is bounded, linear, and coercive. These properties imply that A is an isomorphism
from H onto H. Thus, for each f ∈ H∗, there exists a unique u ∈ H such that

〈Au, v〉 = f(v) for all v ∈ H,

i.e.,
a(u, v) = f(v) for all v ∈ H.

Remark 1.7. This result is also true in complex Hilbert spaces provided that we replace
the coercivity condition by Re a(u, u) ≥ α‖u‖2.
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2 Sobolev Spaces and Elliptic PDEs

2.1 Sobolev Spaces
Sobolev spaces generalize the idea of differentiability by allowing us to work with functions
whose derivatives may exist only in a weak (distributional) sense. They provide a natural
setting for studying partial differential equations, variational problems, and modern mathe-
matical physics.

2.2 Geometric meaning
Intuitively, a Sobolev space W 1,p(Ω) can be thought of as the set of functions whose graphs
are not too rough. The parameter p measures how much oscillation or how big the values of
the function and its derivatives can be. For example

• Large p values penalize large peaks strongly, so functions are more regular.

• Smaller p allows more variation, but still controls the average size of the derivatives.

In geometric terms, W 1,p(Ω) contains functions whose slopes are p-integrable.

2.3 Definition and Basic Properties
Definition 2.1 (C∞c (Ω) or C∞0 (Ω)). Let Ω ⊂ RN be an open set. We denote by C∞c (Ω) or
by C∞0 (Ω) the set of all functions

C∞c (Ω) = {ϕ : Ω→ R | ϕ is infinitely differentiable and has compact support in Ω} .

That is:

• ϕ ∈ C∞(Ω) (all partial derivatives of all orders exist and are continuous);

• supp(ϕ), the closure of the set where ϕ 6= 0, is compact and contained in Ω.

Intuitively, C∞c (Ω) consists of smooth bump functions that vanish outside some bounded
region strictly inside Ω. They are used as test functions in distribution theory and in the
definition of weak derivatives.

Example 2.1. If Ω = (−1, 1), the function

ϕ(x) =

e
− 1

1−x2 , |x| < 1,
0, |x| ≥ 1,

belongs to C∞c (−1, 1): it is smooth and its support is the closed interval [−1, 1].

Definition 2.2 (Weak derivative). Let u ∈ L1
loc(Ω) and 1 ≤ i ≤ N . We say that u has a

weak partial derivative ∂u
∂xi

= g ∈ L1
loc(Ω) if∫

Ω
u
∂ϕ

∂xi
dx = −

∫
Ω
g ϕ dx for all ϕ ∈ C∞c (Ω).

In this case, g is called the weak derivative of u with respect to xi.
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Remark 2.1. This definition generalizes the classical derivative:

• If u is differentiable in the classical sense, its classical derivative coincides with the
weak derivative.

• The weak derivative can exist even if u is not differentiable pointwise (e.g., functions
with corners or cusps).

Example 2.2 (Absolute value). Consider u(x) = |x| on Ω = (−1, 1). Classically, u is not
differentiable at x = 0. However, in the weak sense:

u′(x) =

1, x > 0,
−1, x < 0,

and this u′ satisfies the weak derivative identity∫ 1

−1
|x|ϕ′(x) dx = −

∫ 1

−1
sign(x)ϕ(x) dx ∀ϕ ∈ C∞c (−1, 1).

Definition 2.3. Let 1 ≤ p ≤ ∞ and Ω ⊂ RN open. We define the first-order Sobolev space

W 1,p(Ω) =
{
u ∈ Lp(Ω) : ∂u

∂xi
exists in the weak sense and ∂u

∂xi
∈ Lp(Ω), ∀ 1 ≤ i ≤ N

}
.

Remark 2.2. Functions equal almost everywhere are identified as the same element in
W 1,p(Ω). When p = 2, we write H1(Ω) = W 1,2(Ω). The letter H stands for Hilbert, since
H1(Ω) is a Hilbert space.

Remark 2.3. If u : Ω→ R is differentiable a.e., then

u ∈ W 1,p(Ω) ⇐⇒ u ∈ Lp(Ω) and |∇u| ∈ Lp(Ω).

Here |∇u| is the Euclidean length of the gradient vector.

Example 2.3 (Singular power function). Let α > 0, Ω = B1(0) ⊂ RN and u(x) = |x|−α.
From u ∈ Lp(Ω) we get 0 < pα < N . Also u ∈ C1(B1(0) \ {0}) and

∂u

∂xi
(x) = −α xi

|x|α+2 .

We require (α + 1)p < N .

u ∈ W 1,p(Ω) ⇐⇒ 1 ≤ p <
N

1 + α
.

Example 2.4 (Function in Lp but not in W 1,p). Let Ω = (0, 1) and u(x) =
√
x. Then

u ∈ L2(0, 1), but u′(x) = 1
2
√
x
/∈ L2(0, 1), so u /∈ W 1,2(0, 1).

Example 2.5 (Smooth compactly supported functions). If ϕ ∈ C∞c (Ω), then ϕ ∈ W k,p(Ω)
for all k ≥ 0, 1 ≤ p ≤ ∞, because all derivatives are smooth and bounded.
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Theorem 2.1 (Banach/Hilbert structure). For each 1 ≤ p ≤ ∞, W 1,p(Ω) is a Banach space
with the norm

‖u‖W 1,p(Ω) =


(∫

Ω
|u|p dx+

N∑
i=1

∫
Ω

∣∣∣∣∣ ∂u∂xi
∣∣∣∣∣
p

dx

)1/p

, 1 ≤ p <∞,

ess supΩ|u|+
∑N
i=1 ess supΩ

∣∣∣ ∂u
∂xi

∣∣∣ , p =∞.

When p = 2, H1(Ω) is a Hilbert space with the inner product

〈u, v〉H1(Ω) =
∫

Ω
uv dx+

N∑
i=1

∫
Ω

∂u

∂xi

∂v

∂xi
dx.

2.4 Density and mollifiers
Let ρ ∈ C∞c (RN) be a non-negative function satisfying:

• supp ρ ⊂ B(0, 1),

•
∫
RN ρ(x) dx = 1.

For ε > 0, define the scaled mollifier:

ρε(x) := 1
εN
ρ
(
x

ε

)
.

Convolution with a mollifier: For u ∈ L1
loc(RN), define the mollification:

uε(x) := (ρε ∗ u)(x) =
∫
RN
ρε(x− y)u(y) dy.

Let u ∈ Lp(RN) for some 1 ≤ p <∞. Then:

1. uε ∈ C∞(RN) for all ε > 0.

2. uε → u in Lp(RN) as ε→ 0.

3. If u ∈ W 1,p(RN), then:

uε ∈ C∞(RN) ∩W 1,p(RN), and ∇uε = ρε ∗ ∇u.

4. ‖uε − u‖W 1,p(RN ) → 0 as ε→ 0.

Theorem 2.2. Let 1 ≤ p <∞. Then the space C∞c (RN) is dense in W 1,p(RN). That is,

∀u ∈ W 1,p(RN), ∃{uk} ⊂ C∞c (RN) such that ‖uk − u‖W 1,p(RN ) → 0.

Proof. Let u ∈ W 1,p(RN). The proof proceeds in two steps:
Define a cut-off function χk ∈ C∞c (RN) such that:

• χk(x) = 1 for |x| ≤ k,
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• χk(x) = 0 for |x| ≥ 2k,

• |∇χk(x)| ≤ C
k
.

Set uk := χku ∈ W 1,p(RN), with compact support.
Then uk → u in W 1,p(RN) as k →∞.
Let ρε be a mollifier. Define:

uk,ε := ρε ∗ uk ∈ C∞c (RN).

Then:
‖uk,ε − uk‖W 1,p(RN ) → 0 as ε→ 0.

Hence, the sequence uk,ε ∈ C∞c (RN) approximates u in W 1,p(RN).
Combining the cut-off and mollification steps, we conclude that any function u ∈ W 1,p(RN)

can be approximated arbitrarily well in the Sobolev norm by smooth, compactly supported
functions. Thus,

C∞c (RN) is dense in W 1,p(RN).

2.5 Higher-order Sobolev spaces
Definition 2.4 (4.14). Let k ∈ N, 1 ≤ p ≤ ∞, Ω ⊂ RN open. The higher-order Sobolev
space W k,p(Ω) is

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu exists in the weak sense and Dαu ∈ Lp(Ω) ∀ |α| ≤ k} ,

where α is a multi-index and
Dαu = ∂|α|u

∂xα1
1 . . . ∂xαN

N

.

Norm:

‖u‖Wk,p(Ω) =



 ∑
|α|≤k

∫
Ω
|Dαu|p dx

1/p

, 1 ≤ p <∞,
∑
|α|≤k

ess supΩ|Dαu|, p =∞.

Remark 2.4. For p = 2, W k,2(Ω) is denoted Hk(Ω) and is a Hilbert space.

Definition 2.5. Let Ω ⊂ Rn be an open set. The Sobolev space W k,p(Ω) for k ∈ N and
1 ≤ p ≤ ∞ is defined as the space of functions u ∈ Lp(Ω) whose weak derivatives up to order
k also belong to Lp(Ω):

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), for all multi-indices |α| ≤ k}.
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The space Hk(Ω) := W k,2(Ω) is a Hilbert space with the inner product:

〈u, v〉Hk =
∑
|α|≤k

∫
Ω
Dαu ·Dαv dx,

which induces the norm:

‖u‖Hk =
 ∑
|α|≤k
‖Dαu‖2

L2(Ω)

1/2

.

Example 2.6. Let u(x) = |x| on Ω = (−1, 1). Then u ∈ H1((−1, 1)) because u ∈ L2 and
its weak derivative u′ = sign(x) is also in L2.

2.6 Sobolev Embeddings and Poincaré inequality
Let Ω ⊂ Rn be a bounded Lipschitz domain.

Theorem 2.3 (Sobolev Embedding Theorem). The following holds:

• If kp < n, then W k,p(Ω) ↪→ Lq(Ω) for q such that p ≤ q ≤ np
n−kp .

• If kp = n, then W k,p(Ω) ↪→ Lq(Ω) for all q <∞.

• If kp > n, then W k,p(Ω) ↪→ C0(Ω̄).

The embedding is compact if q < np
n−kp .

Theorem 2.4 (Poincaré–Wirtinger). Let 1 ≤ p <∞. Define the integral average

uΩ := 1
|Ω|

∫
Ω
u(x) dx (u ∈ L1(Ω)).

Then there exists a constant CPW = CPW (Ω, p) > 0 such that for all u ∈ W 1,p(Ω)

‖u− uΩ‖Lp(Ω) ≤ CPW ‖∇u‖Lp(Ω).

2.7 Weak Solutions and Critical Points
Definition 2.6. A function u ∈ H1

0 (Ω) is a weak solution of the elliptic equation −∆u = f
in Ω if: ∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx for all v ∈ H1

0 (Ω).

This corresponds to finding critical points of the energy functional:

E(u) = 1
2

∫
Ω
|∇u|2dx−

∫
Ω
fu dx.
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2.8 Spectrum of the Laplace Operator
Let Ω ⊂ Rn be a bounded Lipschitz domain. Consider the Dirichlet Laplacian eigenvalue
problem:

−∆u = λu in Ω, u = 0 on ∂Ω.
We aim to prove that the spectrum consists of a discrete set of positive eigenvalues:

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞,
with corresponding eigenfunctions forming an orthonormal basis in L2(Ω).

Define the bilinear form:
a(u, v) =

∫
Ω
∇u · ∇v dx,

on the Hilbert space H1
0 (Ω). The eigenvalue problem becomes: find u ∈ H1

0 (Ω), u 6= 0, and
λ ∈ R such that

a(u, v) = λ
∫

Ω
uv dx ∀v ∈ H1

0 (Ω).

Define the operator T : L2(Ω)→ L2(Ω) as follows: for f ∈ L2(Ω), let u ∈ H1
0 (Ω) be the

unique weak solution of
−∆u = f in Ω, u = 0 on ∂Ω,

and set T (f) = u.
We verify the following:
• Boundedness: T is a bounded operator from L2(Ω) into H1

0 (Ω), hence into L2(Ω).

• Self-adjointness: For f, g ∈ L2(Ω), with u = T (f) and v = T (g), we have:

〈T (f), g〉 =
∫

Ω
ug dx =

∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx = 〈f, T (g)〉.

So T is self-adjoint.

• Compactness: The inclusion H1
0 (Ω) ↪→ L2(Ω) is compact (Rellich–Kondrachov the-

orem). Since T maps bounded subsets of L2 into bounded subsets of H1
0 (Ω), and then

into L2, T is a compact operator on L2(Ω).
By the spectral theorem for compact self-adjoint operators on Hilbert spaces, the operator

T has a discrete spectrum {µk} ⊂ R with µk → 0, and the corresponding eigenfunctions
{φk} form an orthonormal basis in L2(Ω). Note that m := inf‖u‖=1〈T (u), u〉 > 0 and
σ(T ) ⊂ [m,∞).

From T (φk) = µkφk, we have

−∆φk = 1
µk
φk = λkφk.

Therefore, the eigenvalues of the Laplacian are λk = 1
µk
→∞ and they are positive.

Remark 2.5. One can show that λ1 is simple, and by the strong maximum principle for
elliptic equations, either u > 0 in Ω or u < 0 in Ω.

The Dirichlet Laplacian has a countable set of positive eigenvalues λk > 0 with finite
multiplicities, satisfying λk →∞, and the corresponding eigenfunctions form an orthonormal
basis of L2(Ω). Hence, the spectrum is discrete.

51



2.8.1 Dirichlet eigenvalue problem on (0, π)

Consider the Dirichlet eigenvalue problem on Ω = (0, π):−u′′(x) = λu(x), x ∈ (0, π),
u(0) = u(π) = 0.

We seek nontrivial solutions u(x) such that −u′′(x) = λu(x) and u(0) = u(π) = 0. Assume
u(x) = sin(kx), then:

u′′(x) = −k2 sin(kx)⇒ −u′′ = k2 sin(kx) = λu(x)⇒ λ = k2.

Boundary condition u(π) = sin(kπ) = 0 implies k = n ∈ N. The eigenvalues are

λn = n2, n = 1, 2, 3, . . .

The corresponding eigenfunctions are:

φn(x) = sin(nx).

These form an orthogonal basis of H1
0 (0, π). The spectrum is discrete, real, and unbounded

above.

2.9 Variational Characterization of the First Eigenvalue
Let Ω be a bounded Lipschitz domain.

Theorem 2.5. The first eigenvalue λ1 of the Dirichlet Laplacian satisfies:

λ1 = inf
u∈H1

0 (Ω)\{0}

∫
Ω |∇u|2dx∫

Ω u
2dx

.

Proof. Let R(u) =
∫

Ω |∇u|
2dx∫

Ω u
2dx

be the Rayleigh quotient. Minimizing R(u) over H1
0 (Ω) \ {0}

yields λ1, and the minimizer solves −∆u = λ1u.

Remark 2.6. The minimizer can be chosen positive and is unique up to a constant multiple.

In particular any norm

‖u‖λ :=
( ∫

Ω
|∇u|2 + λ|u|2 dx

)1/2
, for λ > −λ1

is equivalent in H1
0 (Ω).
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2.10 From the Nonlinear Schrödinger Equation to an Elliptic PDE
The nonlinear Schrödinger equation (NLS) arises as an effective model in various physical
contexts:

• Nonlinear optics: In a Kerr medium, the electric field envelope u(x, t) satisfies a
paraxial wave equation that, under suitable scaling, reduces to the cubic NLS. The
cubic term ∓b|u|2u models the intensity-dependent refractive index; the “−” sign cor-
responds to self-focusing (formation of spatial or temporal solitons), while the “+” sign
describes self-defocusing.

• Bose–Einstein condensates (BECs): At ultra-low temperatures, the macroscopic
wavefunction of a dilute Bose gas is governed by the Gross–Pitaevskii equation

i~ ∂tψ = − ~2

2m∆ψ + Vtrap(x)ψ + g|ψ|2ψ,

where g is proportional to the s-wave scattering length. In nondimensional form, this
is the cubic NLS (1). The sign of g determines whether the atomic interactions are
repulsive (defocusing) or attractive (focusing). Nobel prize: The first creation of a
BEC in dilute gases (Eric A. Cornell, Wolfgang Ketterle, and Carl E. Wieman) was
awarded the 2001 Nobel Prize in Physics, with the Gross–Pitaevskii model playing a
central theoretical role.

Nonlinear Schrödinger equation We consider the cubic NLS with real parameter b > 0:

i ∂tu = −∆u+ V (x)u ∓ b |u|2u, x ∈ Rn, t > 0. (1)

The focusing case corresponds to the “−” sign and the defocusing case to “+”.
Standing wave ansatz Let

u(x, t) = e−iωt φ(x), ω > 0.

Substituting into (1) yields the semilinear elliptic PDE

−∆φ+
(
V (x) + ω

)
φ ∓ b |φ|2φ = 0.

sech(x) = 1
cosh(x) = 2

ex + e−x
, where cosh(x) = ex + e−x

2 .

Typical boundary conditions
• Whole space: x ∈ Rn, φ ∈ H1(Rn), φ(x)→ 0 as |x| → ∞.

• Bounded domain Ω: Dirichlet φ|∂Ω = 0, or Neumann/periodic.
1D explicit solution (focusing case) In one spatial dimension, the solution to

−φ′′ + ωφ− b φ3 = 0

is given by the solitary wave

φ(x) =
√

2ω
b

sech
(√

ω x
)
.
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2.11 Direct Method in the Calculus of Variations
Theorem 2.6. Let X be a reflexive Banach space and K ⊂ X be nonempty, closed, and
weakly sequentially closed. Suppose J : K → R ∪ {+∞} is

• coercive: ‖u‖ → ∞ implies J(u)→ +∞,

• weakly lower semicontinuous (w.l.s.c.): if un ⇀ u in X, then J(u) ≤ lim infn→∞ J(un).

Then J attains its minimum on K, i.e., there exists u∗ ∈ K with J(u∗) = infu∈K J(u).

Proof. Let m := infu∈K J(u) and pick a minimizing sequence (un) ⊂ K such that J(un) ↓ m.
Coercivity implies (un) is bounded in X. Since X is reflexive, there exists a subsequence
(not relabeled) and u∗ ∈ X such that un ⇀ u∗ in X. Because K is weakly sequentially
closed, u∗ ∈ K. By weak lower semicontinuity,

J(u∗) ≤ lim inf
n→∞

J(un) = m.

Hence J(u∗) = m and u∗ is a minimizer.

Common sufficient conditions for w.l.s.c. are convexity of J and continuity.

Theorem 2.7. Let X be a Banach space and let J : X → (−∞,+∞] be convex and
continuous. Then J is weakly lower semicontinuous (w.l.s.c.), i.e.,

un ⇀ u in X =⇒ J(u) ≤ lim inf
n→∞

J(un).

Proof. For α ∈ R consider the sublevel set

Aα := {u ∈ X : J(u) ≤ α }.

Since J is convex, each Aα is convex; since J is (strongly) continuous, each Aα is also closed
in the norm topology. We now recall a classical geometric fact (Mazur’s theorem): for convex
subsets of a Banach space, the weak closure coincides with the norm closure; in particular,
if a convex set is strongly closed, it is also weakly closed. Consequently, each Aα is weakly
closed. By the definition of weak lower semicontinuity, a functional J is w.l.s.c. if and only
if all its sublevel sets Aα are weakly closed. Therefore J is w.l.s.c.

Example 2.7. Let Ω ⊂ Rd be bounded with Lipschitz boundary and f ∈ H−1(Ω). Consider

J(u) =
∫

Ω

(
|∇u|2 + |u|2

)
dx − 2〈f, u〉H−1,H1

0
, u ∈ H1

0 (Ω).

Then J has a unique minimizer u∗ ∈ H1
0 (Ω). Moreover u∗ is a unique weak solution to

−∆u+ u = f, in H1
0 (Ω).
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Proof. Work in the reflexive space X = H1
0 (Ω) with the norm ‖u‖2

H1
0

=
∫

Ω |∇u|2 dx (equiva-
lent to the standard norm by Poincaré). For coercivity, by Cauchy–Schwarz and the Riesz
representation of H−1,

J(u) ≥ ‖u‖2
H1

0
− 2‖f‖H−1‖u‖H1

0
≥ 1

2‖u‖
2
H1

0
− C‖f‖2

H−1 ,

so J(u)→ +∞ as ‖u‖H1
0
→∞. For w.l.s.c., observe that the quadratic form u 7→

∫
Ω(|∇u|2 +

|u|2) dx is convex and w.l.s.c. on H1
0 (Ω), while the linear term u 7→ −2〈f, u〉 is weakly

continuous. Hence J is w.l.s.c. By the Direct Method Theorem of Calculus of Variations, a
minimizer u∗ exists. Moreover, J is strictly convex (sum of a strictly convex quadratic form
and a linear functional), so the minimizer is unique.

2.11.1 Dirichlet problem with a defocuscing nonlinearity

Let Ω ⊂ RN be bounded with Lipschitz boundary, and let

2 < p < 2∗ = 2N
N − 2 (with the usual convention 2∗ =∞ if N ≤ 2).

Work in H1
0 (Ω) with the equivalent norm

‖u‖2
H1

0
=
∫

Ω
|∇u|2 dx.

Consider the energy functional

J(u) =
∫

Ω

(
1
2 |∇u|

2 + λ

2 |u|
2 + 1

p
|u|p

)
dx, u ∈ H1

0 (Ω).

Critical points of J solve

−∆u+ λu+ |u|p−2u = 0 in Ω, u = 0 on ∂Ω,

i.e. the are weak solutions to −∆u+ λu = −|u|p−2u.

Theorem 2.8. Assume 2 < p < 2∗. Then J attains its minimum on H1
0 (Ω). Let λ1 = λ1(Ω)

be the first Dirichlet eigenvalue of −∆.

• If λ ≥ −λ1, then the unique minimizer is u∗ ≡ 0, hence the unique weak solution is
u = 0.

• If λ < −λ1, then there exists a nontrivial minimizer u∗ 6≡ 0. Any minimizer is a weak
solution of the PDE.

Proof. Coercivity. By Sobolev embedding H1
0 (Ω) ↪→ Lp(Ω), we have ‖u‖Lp ≤ C‖u‖H1

0
. By

Poincaré’s inequality, ∫
Ω
|u|2 dx ≤ λ−1

1

∫
Ω
|∇u|2 dx.

Hence
J(u) ≥ 1

2‖∇u‖
2
L2 + λ

2λ1
‖∇u‖2

L2 + 1
p
‖u‖pLp ≥ c1‖∇u‖2

L2 − c2,
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for some c1 > 0 (use Young’s inequality if λ < 0). Thus J(u)→ +∞ when ‖u‖H1
0
→∞.

Weak lower semicontinuity. The maps u 7→
∫
|∇u|2 and u 7→

∫
|u|p are convex and

continuous, hence weakly lower semicontinuous. With the compact embedding H1
0 ↪→ L2,

the quadratic term is weakly continuous. Therefore J is weakly l.s.c.
Existence. Take a minimizing sequence, use reflexivity to extract un ⇀ u∗ in H1

0 , then
weak l.s.c. yields J(u∗) = inf J .

Characterization by λ1. We can write

J(u) = 1
2

∫
Ω

(
|∇u|2 + λ|u|2

)
dx+ 1

p

∫
Ω
|u|p dx.

By Poincaré, ∫
Ω

(|∇u|2 + λ|u|2) dx ≥ (λ1 + λ)
∫

Ω
|u|2 dx.

If λ ≥ −λ1, then both the quadratic and the p-power terms are nonnegative, so J(u) ≥ 0
with equality only at u = 0. Hence u∗ = 0 is the unique minimizer/solution.

If λ < −λ1, pick the first eigenfunction φ1 > 0 with ‖φ1‖L2 = 1. For small t > 0,

J(tφ1) = t2

2 (λ1 + λ) + tp

p
‖φ1‖pLp < 0,

since λ1 + λ < 0 and p > 2. Thus inf J < 0 = J(0), so any minimizer satisfies u∗ 6≡ 0.

2.12 Minimax Methods and the Mountain Pass Theorem
Theorem 2.9 (Mountain Pass Theorem). Let X be a Banach space and J ∈ C1(X,R)
satisfy:

• J(0) = 0,

• There exist ρ, α > 0 such that J(u) ≥ α for ‖u‖ = ρ,

• There exists v with ‖v‖ > ρ such that J(v) < 0.

If J satisfies the Palais–Smale condition (defined below), then J has a critical point u 6= 0
at level

c = inf
γ∈Γ

sup
t∈[0,1]

E(γ(t)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = v}.

Definition 2.7 (Palais–Smale condition). A functional J ∈ C1(X,R) is said to satisfy the
Palais–Smale (PS) condition if every sequence (un) ⊂ X such that (E(un)) is bounded and
J ′(un)→ 0 in X∗ contains a convergent subsequence in X.
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Illustration: Mountain Pass Geometry.

2.12.1 Dirichlet problem with a focuscing nonlinearity

Let us consider

J(u) =
∫

Ω

(
1
2 |∇u|

2 + λ

2 |u|
2 − 1

p
|u|p

)
dx, u ∈ H1

0 (Ω).

Lemma 2.1 (Positivity of the mountain pass level). Let 2 < p < 2∗ and λ > −λ1. Define

Γ = {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = 0, J(γ(1)) < 0}, c = inf

γ∈Γ
sup
t∈[0,1]

J(γ(t)).

Then c > 0.

Proof. By Sobolev embedding and Poincaré, for small ‖u‖H1
0
we have

J(u) ≥ 1
2(λ1 + λ)‖u‖2

L2 −
C

p
‖u‖p

H1
0
≥ α > 0 whenever ‖u‖H1

0
= ρ

for some ρ, α > 0. Any γ ∈ Γ must cross the sphere ‖u‖H1
0

= ρ; hence supt J(γ(t)) ≥ α and
taking the infimum over Γ yields c ≥ α > 0.
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Lemma 2.2 (Boundedness of (PS)c sequences). Let (un) ⊂ H1
0 (Ω) satisfy J(un) → c and

J ′(un)→ 0 in H−1(Ω). Then (un) is bounded in H1
0 (Ω).

Proof. Compute, for each u ∈ H1
0 (Ω),

〈J ′(u), u〉 =
∫

Ω

(
|∇u|2 + λ|u|2 − |u|p

)
dx,

and
J(u)− 1

p
〈J ′(u), u〉 = p− 2

2p

∫
Ω

(
|∇u|2 + λ|u|2

)
dx. (∗)

Apply (∗) with u = un:

p− 2
2p

∫
Ω

(
|∇un|2 + λ|un|2

)
dx = J(un)− 1

p
〈J ′(un), un〉 = c+ o(1) + o(1) ‖un‖H1

0
.

Using Poincaré, ∫
Ω

(
|∇un|2 + λ|un|2

)
dx ≥ (λ1 + λ)‖un‖2

L2 ,

with λ1 + λ > 0. Hence, for some constants C1, C2 > 0

‖un‖2
H1

0
≤ C1

∫
Ω

(
|∇un|2 + λ|un|2

)
dx ≤ C2

(
1 + ‖un‖H1

0

)
,

which implies supn ‖un‖H1
0
<∞.

Remark 2.7. The identity (∗) is the standard trick that yields boundedness for any (PS)
sequence of J and works thanks to p ∈ (2, 2∗) and λ > −λ1. Combined with Rellich–
Kondrachov, this also gives (after extracting a subsequence) un ⇀ u in H1

0 and un → u in
Lp, which is the key step in verifying the Palais-Smale condition for J .

Theorem 2.10 (Mountain pass solution for the focusing case). Let Ω ⊂ RN be bounded
with Lipschitz boundary and 2 < p < 2∗. Assume λ > −λ1. Then J has a critical point
u 6≡ 0 obtained by the Mountain Pass Theorem.

Proof. Mountain pass geometry. By Poincaré,
∫

(|∇u|2 + λ|u|2) dx ≥ (λ1 + λ)‖u‖2
L2 . Hence

for small ‖u‖H1
0
,

J(u) ≥ 1
2(λ1 + λ)‖u‖2

L2 − 1
p
‖u‖pLp > 0,

so there exist ρ, α > 0 with J(u) ≥ α whenever ‖u‖H1
0

= ρ. On the other hand, for any fixed
w ∈ H1

0 (Ω) \ {0}, J(tw) = t2

2
∫

(|∇w|2 + λ|w|2) − tp

p
‖w‖pLp → −∞ as t → ∞, so there exists

v with J(v) < 0. Thus the Mountain Pass geometry holds.
Palais–Smale condition. Let (un) be a sequence with J(un) bounded and J ′(un) → 0

in H−1. In view of Lemma 2.2, we deduce that (un) is bounded in H1
0 (Ω). By Rellich–

Kondrachov, up to a subsequence un ⇀ u in H1
0 and un → u in Lp(Ω) (since p < 2∗). Then

the standard variational argument gives un → u in H1
0 (Ω), i.e. the (PS) condition holds.
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2.13 Introduction to Spectral Theory of Schrödinger Operators
Consider the operator

H = −∆ + V (x), x ∈ Rn,

where the potential V : Rn → R is periodic with respect to a lattice Γ ⊂ Rn, i.e.

V (x+ γ) = V (x) ∀γ ∈ Γ.

For simplicity, take Γ = Zn.
By the Floquet–Bloch theory, the spectrum of H is the union of disjoint intervals:

σ(H) =
⋃
n≥1

[ak, bk].

Each interval [ak, bk] is called an energy band. The spectrum is purely absolutely continuous,
and spectral gaps may occur between consecutive bands.

Physical interpretation. In solid-state physics, V models the periodic potential of a
crystal lattice. The band–gap structure explains the difference between conductors, semi-
conductors, and insulators.

Spectrum of −∆ on RN

Let −∆ act on L2(RN) with domain H2(RN). Then

σ(−∆) = σc(−∆) = [0,∞).

In words: the spectrum is purely absolutely continuous, equal to the half–line [0,∞); there
are no eigenvalues and no singular continuous spectrum.

2.14 Radial solutions in RN via variational methods
Let N ≥ 2, 2 < p < 2∗ := 2N

N−2 (with the usual convention 2∗ = ∞ if N = 2). Assume
V : RN → R is measurable, radial, and

V (x) ≥ V0 > 0 for a.e. x ∈ RN .

Work in the radial subspace

H1
rad(RN) := {u ∈ H1(RN) : u(x) = u(|x|)}.

Consider the functional

J(u) = 1
2

∫
RN
|∇u|2 + V (x)|u|2 dx− 1

p

∫
RN
|u|p dx, u ∈ H1

rad(RN).

Critical points of J are weak radial solutions of

−∆u+ V (x)u = |u|p−2u in RN .
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Theorem 2.11. Under the assumptions above, J satisfies the Mountain Pass geometry and
the Palais–Smale condition on H1

rad(RN). Consequently, there exists u ∈ H1
rad(RN) \ {0}

with J ′(u) = 0.
Proof. Mountain Pass geometry. For small ‖u‖H1 ,

J(u) ≥ 1
2

∫
(|∇u|2 + V0|u|2)− C

p
‖u‖pH1 > 0,

so ∃ ρ, α > 0 with J(u) ≥ α if ‖u‖H1 = ρ. Fix w ∈ H1
rad\{0}; then J(tw)→ −∞ as t→∞,

so ∃ v with J(v) < 0.
Palais–Smale on the radial subspace. Let (un) ⊂ H1

rad be a (PS) sequence: J(un) bounded,
J ′(un)→ 0. The identity

J(un)− 1
p
〈J ′(un), un〉 = p− 2

2p

∫ (
|∇un|2 + V (x)|un|2

)
gives boundedness of (un) in H1. By the radial compact embedding (Strauss lemma),
H1

rad(RN) ↪→ Lq(RN) is compact for every 2 < q < 2∗. Hence, up to a subsequence, un ⇀ u
in H1 and un → u in Lp, which yields J ′(u) = 0 and then un → u in H1 by standard
arguments.
Remark 2.8.
• If V is constant, all arguments above hold.

• The restriction to H1
rad restores compactness in RN ; without radial symmetry one

typically uses concentration–compactness (Lions).

• At the critical exponent p = 2∗ the compactness fails; existence requires additional
structure (e.g. potentials V with traps) or refined tools.

Lemma 2.3 (Lions). Let (un) be a bounded sequence in H1(RN), N ≥ 2. Assume that
there exists R > 0 such that

lim
n→∞

sup
y∈RN

∫
BR(y)

|un(x)|2 dx = 0.

Then un → 0 strongly in Lq(RN) for every q ∈ (2, 2∗).
Theorem 2.12 (Existence via Mountain Pass for periodic V ). Let V : RN → R be ZN–
periodic and continuous. Assume that the Schrödinger operator

L := −∆ + V (x)
on L2(RN) satisfies

0 < inf σ(L).
Let 2 < p < 2∗. Then the equation

−∆u+ V (x)u = |u|p−2u, u ∈ H1(RN),
admits a nontrivial weak solution obtained by the Mountain Pass Theorem.

For the interested reader, we refer to the relevant literature [1, 5, 11, 12] and welcome fur-
ther inquiries, especially regarding the fascinating world of nonlinear phenomena associated
with Maxwell and Schrödinger equations [4].
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3 Problems
Exercise 3.1. The sequence space `p for 1 ≤ p ≤ ∞ consists of all sequences x = (xn)∞n=1
of scalars such that:

‖x‖p =

(∑∞n=1 |xn|p)
1/p if 1 ≤ p <∞,

supn∈N |xn| if p =∞,

is finite. Each `p space is a Banach space.

Exercise 3.2. The space Lp([a, b]) for 1 ≤ p ≤ ∞ consists of (equivalence classes of)
measurable functions f : [a, b]→ R (or C) such that the p-th power of the absolute value is
integrable:

‖f‖p =


(∫ b
a |f(x)|p dx

)1/p
if 1 ≤ p <∞,

ess supx∈[a,b]|f(x)| if p =∞.
These spaces are Banach spaces.

Exercise 3.3. The space C([a, b]) of continuous real (or complex) functions on [a, b] equipped
with the supremum norm

‖f‖∞ = sup
x∈[a,b]

|f(x)|

is also a Banach space.

Exercise 3.4 (Non-complete normed space). Let c00 denote the space of sequences with
only finitely many nonzero terms, equipped with the `p norm for some 1 ≤ p < ∞. Then
(c00, ‖ · ‖p) is a normed space, but it is not complete — its completion is `p.

Exercise 3.5. Consider the space of polynomials P ([0, 1]) with the sup norm. Is this a
Banach space?

Remark 3.1. The space of polynomials is dense in C([0, 1]), but it is not complete, hence
not a Banach space.

Exercise 3.6. Let X = c, the space of convergent sequences with the sup norm. Show that
X is a Banach space.

Example 3.1. Define T : `2 → `2 by T (x1, x2, x3, ...) = (x1, x2/2, x3/3, ...). Prove that T is
bounded and compute its norm.

Exercise 3.7. Let T be defined on L2([0, 1]) by (Tf)(x) =
∫ x

0 f(t)dt. Show that T is a
bounded linear operator.

Exercise 3.8. Let (X, ‖ · ‖) be a normed space. For every x0 ∈ X there exists a continuous
functional f0 : X → R such that ‖f0‖ = ‖x0‖ and f0(x0) = ‖x0‖2.

Exercise 3.9. Let c0 be the space of all sequences converging to zero, equipped with the
supremum norm. Is c0 a closed subspace of `∞? Is it a Banach space?

Exercise 3.10. Let X = R2 and M = span((1, 1)). Define the quotient space X/M .
Describe the equivalence classes and the geometry of this space.
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Exercise 3.11. Let X = `2 and let M ⊂ X be the subspace consisting of all sequences with
only the first coordinate possibly nonzero. Describe the quotient space X/M . Is it a Banach
space?

Exercise 3.12. Find the dual space (`1)∗. Prove that

(`1)∗ ∼= `∞.

Exercise 3.13. Define the operator T : `2 → `2 by

T ((x1, x2, x3, . . . )) = (0, x1, x2, . . . ).

Is T linear? Is it continuous? Is it invertible?

Exercise 3.14. Define a Banach space D(T ) ⊂ C[0, 1] such that T : D(T )→ C[0, 1] defined
by T (f) = f ′ is well-defined. Is T bounded?

Exercise 3.15. Define the operator T : L2[0, 1]→ L2[0, 1] by

T (f)(x) =
∫ x

0
f(t) dt.

Is T linear? Is it bounded? Is it invertible?

Exercise 3.16. Let T : C[0, 1]→ C[0, 1] be defined by

T (f)(x) =
∫ x

0
f(t) dt.

Show that T is not an open map.

Exercise 3.17. Let X = Y = Lp[0, 1], where 1 < p <∞, and let T : X → Y be a bounded
surjective linear operator. Prove that the image T (BX(0, 1)) contains a ball around 0 in Y .

Exercise 3.18. Let

c00 = {x = {xn}n∈N : #{n : xn 6= 0} <∞}

be the space of finitely supported sequences, equipped with the supremum norm

‖x‖∞ = sup
n∈N
|xn|.

For each n ∈ N, define a linear operator Tn : c00 → R by

Tn(x) = nxn.

(a) Show that the family {Tn}n∈N is pointwise bounded.

(b) Compute the operator norm ‖Tn‖ for each n ∈ N. Conclude that the family {Tn} is
not uniformly bounded.

(c) Explain why this example does not contradict the Banach-Steinhaus theorem.
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Exercise 3.19. Let T : `1 → `∞ be defined by T (x) = x. Is that T a bounded operator,
does it has a closed graph?

Exercise 3.20. Let T : D(T ) ⊂ L2(0, 1)→ L2(0, 1), with D(T ) = C∞c (0, 1), and T (f) = f ′.
Determine whether T has a closed graph and whether T is continuous.

Example 3.2. In `2, the sequence xn = (0, 0, ..., 0, 1, 0, ...) with 1 in the n-th place converges
weakly to 0 but not strongly.

Exercise 3.21. Let xn = (1/n, 1/n, 1/n, ..., 1/n, 0, · · · ) in `2, n times 1
n
. Determine whether

xn converges strongly, weakly, or both.

Exercise 3.22. Let X = RN for N ≥ 1. Prove that a sequence {xn} ⊂ RN converges weakly
to x ∈ RN if and only if it converges strongly.

Exercise 3.23. Let en = (0, 0, . . . , 1, 0, . . . ) ∈ `∞ = (`1)∗ be the n-th standard basis vector.
Then en ∗

⇀ 0.

Exercise 3.24. Consider the unilateral shift operator S : `2 → `2 defined by

S(x1, x2, x3, . . . ) = (0, x1, x2, x3, . . . ).

1. Show that S is a bounded linear operator.

2. Show that S is Fredholm and find its index.

Exercise 3.25. We consider the standard norms in C[0, 1] and C1[0, 1]:

‖g‖C[0,1] = sup
x∈[0,1]

|g(x)| for g ∈ C[0, 1],

‖f‖C1[0,1] = sup
x∈[0,1]

|f(x)|+ sup
x∈[0,1]

|f ′(x)| for f ∈ C1[0, 1].

Define T : C1[0, 1]→ C[0, 1] by Tf = f ′.

1. Show that T is bounded and determine kerT .

2. Describe the range R(T ).

3. Show that T is Fredholm and compute its index.

Exercise 3.26. Let T : `2 → `2 be defined by

T (x1, x2, x3, . . . ) =
(
x1

2 ,
x2

3 ,
x3

4 , . . .
)
.

Determine the spectrum σ(T ) and all eigenvalues of T .

Exercise 3.27. Prove that if T has finite rank, then 0 belongs to the spectrum of T unless
T is invertible.

We recall the following theorem.

63



Theorem 3.1 (Arzelà–Ascoli). Let (X, d) be a compact metric space and let F ⊂ C(X),
where C(X) is the space of continuous real-valued functions on X equipped with the sup
norm

‖f‖∞ = sup
x∈X
|f(x)|.

Then F is relatively compact in C(X) (i.e., its closure is compact) if and only if:

1. Equicontinuity: For every ε > 0 there exists δ > 0 such that for all f ∈ F and all
x, y ∈ X with d(x, y) < δ,

|f(x)− f(y)| < ε.

2. Pointwise boundedness: For every x ∈ X, the set

{f(x) : f ∈ F}

is bounded in R.

Exercise 3.28. For the operator T : C[0, 1]→ C[0, 1], defined by

(Tf)(x) =
∫ x

0
f(y) dy,

prove that T is compact and find all eigenvalues of T .

Exercise 3.29. Let T : C[0, 1]→ C[0, 1] be defined by

(Tf)(x) =
∫ 1

0
K(x, y)f(y) dy,

where K ∈ C([0, 1] × [0, 1]). Show that T is compact and, if K(x, y) can be written as a
finite sum ∑m

i=1 gi(x)hi(y), then T has finite rank.

Exercise 3.30. Let T : X → X be a compact operator. Show that σ(T ) is either finite or
countably infinite with 0 as the only possible accumulation point.

Exercise 3.31. Let T : `2 → `2 be given by

T (x1, x2, x3, . . . ) = (0, x1, x2, . . . ),

i.e. the right shift operator. Prove that T is bounded but not compact, and determine its
spectrum σ(T ).

Exercise 3.32. Let T : `2 → `2 be a diagonal operator defined by

T (x1, x2, x3, . . . ) = (λ1x1, λ2x2, λ3x3, . . . ),

where (λn) is a bounded sequence of scalars. Determine when T is compact and describe
σ(T ) in that case.
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Exercise 3.33. Let H = `2, and let M ⊂ H be the subspace defined by

M =
{
x = (x1, x2, x3, . . . ) ∈ `2 : xn = 0 for all n ≥ 2

}
.

That is, M = span{e1}, where e1 = (1, 0, 0, . . . ).
Given the vector x = (3, 4, 0, 0, . . . ) ∈ `2, find the orthogonal projection PMx of x onto M ,
and compute the distance ‖x− PMx‖.

Exercise 3.34. Let H = L2([0, 1]). Define the linear functional

φ(f) =
∫ 1

0
f(x) · x2 dx.

Show that φ is a bounded linear functional on H, and find the unique function g ∈ H such
that

φ(f) = 〈f, g〉L2 for all f ∈ H.

Exercise 3.35. Let H = `2. Define the linear functional φ : H → C by

φ(x) = 2x1 − x3 + ix4, for x = (x1, x2, x3, x4, . . . ).

Show that φ is bounded and find the vector y ∈ `2 such that

φ(x) = 〈x, y〉`2 for all x ∈ `2.

Exercise 3.36. Let T : `2 → `2 be the diagonal operator defined by

T (x1, x2, x3, . . . ) =
(1

1x1,
1
2x2,

1
3x3, . . .

)
.

(a) Show that T is compact and self-adjoint.

(b) Find the spectrum σ(T ).

(c) Use the spectral theorem to describe an orthonormal basis of eigenvectors for T .

Exercise 3.37. Let T : L2([0, 1])→ L2([0, 1]) be the integral operator defined by

(Tf)(x) =
∫ 1

0
min(x, y)f(y) dy.

(a) Show that T is compact and self-adjoint.

(b) State what the spectral theorem says about the structure of T .

Exercise 3.38. Let H = L2([0, 1]), andM = {f ∈ H :
∫ 1

0 f(x)dx = 0}. Find the orthogonal
complement M⊥.

Exercise 3.39. Let H = L2[0, 1]. Then the sequence

{1} ∪
{√

2 cos(2πnt),
√

2 sin(2πnt)
}∞
n=1

is an orthonormal basis of H.
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Exercise 3.40. Let H = `2 and define the bilinear form:

a(u, v) =
∞∑
n=1

λnunvn,

where λn ≥ λ > 0 for all n ∈ N, and (λn) is a bounded sequence. Let f = (f1, f2, . . .) ∈ `2,
and define the linear functional:

f(v) =
∞∑
n=1

fnvn.

(a) Show that a(u, v) is a bounded bilinear form on `2.

(b) Show that a is coercive, i.e., a(u, u) ≥ α‖u‖2 for some α > 0.

(c) Show that f(v) is a bounded linear functional on `2.

(d) Use the Lax-Milgram theorem to prove that there exists a unique u ∈ `2 such that

a(u, v) = f(v) for all v ∈ `2.

Moreover, find an explicit formula for u.

Exercise 3.41. Prove that the operator T : L2(Ω) → L2(Ω) from Section 2.8 is bounded
and compact.
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