Functional Analysis

Jarosław Mederski

Scuola Matematica Interuniversitaria, Perugia 2025

Table of Contents

Exercise 0.1. Let $e_n = (0, 0, \dots, 1, 0, \dots) \in \ell^{\infty} = (\ell^1)^*$ be the *n*-th standard basis vector. Then $e_n \stackrel{*}{\longrightarrow} 0$.

Exercise 0.2. Consider the unilateral shift operator $S: \ell^2 \to \ell^2$ defined by

$$S(x_1, x_2, x_3, \dots) = (0, x_1, x_2, x_3, \dots).$$

- 1. Show that S is a bounded linear operator.
- 2. Show that S is Fredholm and find its index.

Exercise 0.3. We consider the standard norms in C[0,1] and $C^1[0,1]$:

$$||g||_{C[0,1]} = \sup_{x \in [0,1]} |g(x)| \text{ for } g \in C[0,1],$$

$$||f||_{C^1[0,1]} = \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)|$$
 for $f \in C^1[0,1]$.

Define $T: C^1[0,1] \to C[0,1]$ by Tf = f'.

- 1. Show that T is bounded and determine $\ker T$.
- 2. Describe the range R(T).
- 3. Show that T is Fredholm and compute its index.

Exercise 0.4. Let $T: \ell^2 \to \ell^2$ be defined by

$$T(x_1, x_2, x_3, \dots) = \left(\frac{x_1}{2}, \frac{x_2}{3}, \frac{x_3}{4}, \dots\right).$$

Determine the spectrum $\sigma(T)$ and all eigenvalues of T.

Exercise 0.5. Prove that if T has finite rank, then 0 belongs to the spectrum of T unless T is invertible.

Theorem 0.1 (Arzelà–Ascoli). Let (X,d) be a compact metric space and let $\mathcal{F} \subset C(X)$, where C(X) is the space of continuous real-valued functions on X equipped with the sup norm

$$||f||_{\infty} = \sup_{x \in X} |f(x)|.$$

Then \mathcal{F} is relatively compact in C(X) (i.e., its closure is compact) if and only if:

1. **Equicontinuity:** For every $\varepsilon > 0$ there exists $\delta > 0$ such that for all $f \in \mathcal{F}$ and all $x, y \in X$ with $d(x, y) < \delta$,

$$|f(x) - f(y)| < \varepsilon.$$

2. Pointwise boundedness: For every $x \in X$, the set

$$\{f(x):f\in\mathcal{F}\}$$

is bounded in \mathbb{R} .

Exercise 0.6. For the operator $T: C[0,1] \to C[0,1]$, defined by

$$(Tf)(x) = \int_0^x f(y) \, dy,$$

prove that T is compact and find all eigenvalues of T.

Exercise 0.7. Let $T: C[0,1] \to C[0,1]$ be defined by

$$(Tf)(x) = \int_0^1 K(x, y) f(y) dy,$$

where $K \in C([0,1] \times [0,1])$. Show that T is compact and, if K(x,y) can be written as a finite sum $\sum_{i=1}^{m} g_i(x)h_i(y)$, then T has finite rank.

Exercise 0.8. Let $T: X \to X$ be a compact operator. Show that $\sigma(T)$ is either finite or countably infinite with 0 as the only possible accumulation point.

Exercise 0.9. Let $T: \ell^2 \to \ell^2$ be given by

$$T(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots),$$

i.e. the right shift operator. Prove that T is bounded but not compact, and determine its spectrum $\sigma(T)$.

Exercise 0.10. Let $T: \ell^2 \to \ell^2$ be a diagonal operator defined by

$$T(x_1, x_2, x_3, \dots) = (\lambda_1 x_1, \lambda_2 x_2, \lambda_3 x_3, \dots),$$

where (λ_n) is a bounded sequence of scalars. Determine when T is compact and describe $\sigma(T)$ in that case.